首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Koizumi S  Kobayashi S 《Genetics》1984,107(3):367-373
The unique feature of the "B system" of mating-type determination found in Paramecium tetraurelia is the existence of a cytoplasmic difference between odd (O) and even (E) cells created and maintained by the action of their macronuclei. Thus far, the presence of a determining factor that controls the differentiation of the developing zygotic macronucleus for O mating type has not been verified. Results of crosses between cells of differing clonal age and complementary mating type suggest that, for one to two fissions after autogamy, O cells produce some factor that determines the gametic nucleus (micronucleus) as mating type O. Direct evidence for the production of O-determining factor by the young O macronucleus was obtained by transplanting young O macronuclear karyoplasm (a part of the macronucleus) into E cells: 32-35% of E exautogamous clones transformed to O; transformation of E exautogamous clones to O reached as high as 72% by transfer of young O macronuclear karyoplasm from a conjugant, 3-4 hr after mixing. This indicates that O determinants produced by the O macronucleus can also act during the sensitive period of development of the new macronucleus. These O-determining factors may be produced or activated at the sexual stage and then decrease in activity in subsequent fissions after new macronuclear reorganization.  相似文献   

2.
Strain d48 of Paramecium tetraurelia contains the A i-antigen gene in the micronucleus, but the gene is lost when micronuclear products develop into the macronucleus. It has recently been shown that when injected into d48, macronucleoplasm from the wild type transforms d48 cells to wild type. It is shown here that wild-type cytoplasm can also bring about transformation, with a marked stage-specific sensitivity for both donor and recipient. It was also found that a plasmid containing the cloned A gene could transform d48 to wild type. Injection of nucleoplasm from animals in the vegetative stage of the cell cycle into the cytoplasm of recipients at various stages of autogamy caused high-frequency transformation of cells able to express the A serotype both before and after the next autogamy. Injection of nucleoplasm into vegetative macronuclei produced over 70% transformants able to express the A serotype after the next autogamy. The ability of nucleoplasm to transform was acquired at the second cell cycle after autogamy and was maintained throughout the vegetative stage. When cytoplasm was obtained from donors during autogamy and injected into the cytoplasm of recipients 1 to 2 h after the sensitive period, quite high frequencies of stable revertants were found when tested both before and after the next autogamy. Cells that were injected into the macronucleus with the cloned A plasmid expressed the A serotype after five fissions in over 20% of the lines and maintained this ability through successive fissions; all transformants except one stably expressed the A serotype even after the next autogamy.  相似文献   

3.
When autogamy was induced in competent cells of Paramecium tetraurelia by depriving them of food, the onset of autogamy was preceded by a critical fission which occurred in the starvation medium. When the cells were fed again immediately after the fission, they did not undergo autogamy. However, they did undergo autogamy when they were fed later than 1 hr after the critical fission. The irreversible differentiation for autogamy seems to be at about 1 hr after the critical fission. This procedure thus provides the opportunity to induce autogamy synchronously. The result of macronuclear transplantation demonstrated that autogamy was under the control of macronucleus. Moreover, the clonal age required for autogamy was found to be shortened by repetitive elimination of a part of the macronucleus. The result can be explained by the hypothesis that clonal age is measured in rounds of chromosome replication or DNA synthesis rather than cell divisions.  相似文献   

4.
A portion of the macronucleus of wild-type cells of Paramecium tetraurelia was removed and was injected into cells homozygous for the ftA mutation. The ftA mutants make defective trichocysts and are unable to perform normal trichocyst exocytosis. After injection, approx. 30% of the surviving cells show a phenotype shift from mutant to wild-type. This shift is stable during subsequent vegetative growth until clonal death. If, however, the hybrid cell lines are brought to autogamy (which discards the existing macronucleus and forms a new one from sexual products derived from a micronucleus), then the lines revert to the ftA phenotype. Since micronuclei were not transplanted, the phenotypic reversion after autogamy is to be expected, and demonstrates that the transformation affects the macronucleus only. A second series of injections involved transfer of a portion of the macronucleus from cells homozygous for the trichocyst ptA mutation into ftA host cells. These two mutations are genetically complementary, so the injection should be genetically equivalent to forming a double heterozygote. Approx. 20% of the injection survivors shift to wild-type. This shift is also vegetatively stable unless autogamy occurs; after autogamy, reversion to the ftA phenotype is seen. These results show that a portion of a macronucleus can be successfully transplanted from one cell to another and that, in the host cytoplasmic environment, normal gene expression and replication of a transplanted macronucleus does occur. The technique of macronuclear transplantation is significant to studies of the macronuclear contribution to clonal aging, and to studies on genetic control over trichocyst development.  相似文献   

5.
The micronucleus from vegetative cells of one mating type (O or E) in Paramecium tetraurelia was transplanted by micropipet into amicronucleate cells of opposite mating type (E or O). When autogamy was induced in the recipient cells, they developed new macronuclei and micronuclei derived from the transplanted micronucleus and usually expressed the same mating type as the recipients. The results indicate that micronuclei in the asexual phase may be undetermined for mating type. Recipient E cells in which the macronucleus had been previously removed were transplanted with a whole macronucleus from an O cell. Their mating type was soon transformed E to O before the occurrence of autogamy, and remained O after autogamy. This demonstrates that the transplanted macronucleus determined the O cytoplasmic state to determine the developing zygotic macronucleus for mating type O. It is unlikely that the micronucleus is determined for mating type in O or E cell during the asexual cycle.  相似文献   

6.
Autogamy in Paramecium tetraurelia is a form of sexual reproduction in a single cell that results in homozygosity in every genetic locus. Autogamy becomes inducible by natural starvation several fissions after the previous autogamy, and percent autogamy increases gradually with clonal age to reach 100%. We here report the degree of variability of the autogamy-maturation pattern, and how it is inherited through autogamous generations. We assessed the autogamy-maturation pattern by monitoring percent autogamy at the ages of 9, 18 and 27 fissions in the wild-type stock 51. To determine how the autogamy-maturation pattern is inherited, clones that showed the lowest and the highest percent autogamy at age 18 in a given autogamous generation (Gn) were examined for their percent autogamy in the next autogamous generation (Gn+1). This procedure was repeated through successive autogamous generations. We found that percent autogamy at ages 9 and 27 was rather stable (low and high, respectively), while it was extremely variable at age 18 ranging from 3% to 100%. We also found that percent autogamy at age 18 in the progeny clones was variable irrespective of percent autogamy at age 18 in the parental clones; there was no regular rule such as producing progeny with higher (or lower) percent autogamy from parents with lower (or higher) percent autogamy.  相似文献   

7.
In Paramecium, age is defined as the number of mitotic divisions which have elapsed since the previous cross-fertilization (conjugation) or self-fertilization (autogamy). As the mitotic interval between fertilizations increases, the percentage of nonviable progeny clones increases. In the current study, resolution of conflicting previous reports on the pattern of increase of death and reduced viability in progeny from aging parent cells is found. Some exautogamous clones exhibit a high mortality at young clonal ages, others show no mortality throughout their life span, but most (73%) show an abrupt increase in the percent death and reduced viability in progeny from cells 50–80 fissions old.

Ultraviolet-irradiation-induced micronuclear mutations, repairable by photoreactivation, increased with increased clonal age when monitored by percent death and reduced viability of exautogamous progeny of irradiated cells. Loss of dark repair is considered a contributor to the increased expression of micronuclear mutations with increased clonal age.

  相似文献   

8.
Cytoplasm in the quantity of about 5% of the cell volume was transferred from young clonal age donors into older recipients. The experimental post-transplantation clones showed statistically significant prolongation of the IAIs as compared with those stemming from the original recipients or donors. This suggests that the cytoplasm of young postautogamous cells contains a component retarding the expression of the autogamy-inducing gene(s).  相似文献   

9.
The odd (O) or even (E) mating type in Paramecium tetraurelia is determined during the first cell cycle after new macronuclear development. The present paper demonstrates that mating type E is irreversibly determined at the end of the first cell cycle. Direct evidence comes from transplanting O macronuclear karyoplasm containing O-determining factor into E autogamous cells during a new postzygotic macronuclear development. Transplantation of O macronuclear karyoplasm into E autogamous cells at 7–8 hr after the origin of the macronucleus from a product of the synkaryon produces nearly 100% O mating type among the exautogamous cell lines but almost none 10–11 hr after the origin of the macronucleus (around the end of the first cell cycle). The macronuclear anlagen at the stage at which mating type E seems to be fixed contains about 20 times as much DNA as the vegetative G1 micronucleus. The O-determining factor shifting E cells toward O mating type by transplanting O macronuclear karyoplasm is also produced by the newly developed macronucleus in an effective concentration at 10–11 hr after the sensitive period and produced at full levels by the third cell cycle. The level of O factor in the macronucleus then gradually declines with subsequent repeated rounds of DNA synthesis and is finally lost by the eighth cell cycle.  相似文献   

10.
The role of the micronucleus in the age-dependent increase in mortality after conjugation in Paramecium has been investigated using micronuclear transplantation. The clone of Paramecium caudatum used for this study had a lifespan of about 750 fissions. In this clone, the fission rate began to decrease about 450 fissions after conjugation. Mortality after selfing conjugation also began to appear at about 450 fissions and gradually increased with clonal age. Cells at about 650 fissions showed 10–70% survival after selfing conjugation but when their micronuclei were transplanted into amicronucleate cells of about 450 fissions, the progeny survival increased to 70–90%. When micronuclei from cells 700–750 fissions old were transplanted into amicronucleate cells of 100–150 fissions, however, increase in progeny survival was very rare. The results indicate that micronuclei in cells up to the age of 650 fissions can function normally if the cytoplasmic environment is young.  相似文献   

11.
Transformation by microinjection of macronucleoplasm in Paramecium caudatum was investigated. Macronucleoplasm with three genetic markers (behavior, trichocyst, and mating type) was injected into the macronucleus. To facilitate microinjection, in most cases, paramecia were immobilized in a gelatin (7.5%) solution. The injected cells began to express a dominant gene (cnrA+ or cnrB+) of the donor 9-24 hr after injection. Expression did not require cell division suggesting injected macronucleoplasm was capable of expressing a phenotype. The amount of injected macronucleoplasm appears to correlate with the frequency of successful expression but not to correlate with the time required for expression. After a number of fissions, the injected cells produced clones which had cells expressing the phenotype of the donor. This suggests that injected macronucleoplasm was replicated and expressed in the recipient cell lines. The transformed clones were classified into two groups. In one group, transformation was stable. All cell lines derived from the injected cells expressed a phenotype similar to the heterozygote of donor and recipient cells. In the other group, transformation was unstable. During the first five to seven fissions after injection, at each division, cells produced one daughter cell which later reverted to the recipient phenotype. After this unstable period, cells no longer produced the recipient phenotype but produced the donor phenotype exclusively. Donor and recipient phenotypes were, thus, segregated in different cell lines. Observation of genetic markers and analysis by computer simulation shed light on the mode of transmission of injected macronucleoplasm. In stable transformation, injected macronucleoplasm appears to be distributed equally to daughter cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Autogamy is a process of meiosis and fertilization which takes place in unpaired Paramecium cells, and which is triggered by starvation. This study examines the consequences of nutritional down-shift at various points within the cell cycle on the occurrence of autogamy. It shows that cells become committed to autogamy in a two-step process. An initial point of commitment to autogamy occurs about 100 min prior to the median time of cell division (cell cycle duration, 330 min). Cells which have become committed to autogamy initiate meiosis following the next fission, others complete another vegetative cell cycle before undergoing meiosis. Treatments that perturb the cell cycle and displace the point of commitment to division also displace the point of initial commitment to autogamy to the same extent.The initial commitment to autogamy can be reversed by refeeding. The second, final, point of commitment to autogamy occurs about 30 min after the fission, immediately prior to initiation of meiosis, and coincides with the beginning of meiosis. If cells are refed at this point, or at later stages, autogamy continues.Autogamy is not well synchronized either in naturally starved cultures or in those subjected to abrupt nutritional down-shift. This is a consequence of the cell cycle stage dependence of entry into autogamy. Autogamy occurs synchronously in samples of dividers selected from asynchronous cultures 2 or more hours after nutritional down-shift. The timing of the events of conjugation and autogamy coincide when the pre-autogamous fission is aligned temporally with the initial contact of mating cells.  相似文献   

13.
The effect of age on the regeneration of the B cell population was studied by cell transfer methods, using the allotype-congenic mouse strains BALB/c (Igha) and C.B-17 (Ighb) as donors of old and young bone marrow (BM) and spleen cells, and C.AL-20 (Igho) as recipients. This design allowed us to identify the origin of the sIgD+ B cells present in the recipients. It was found that in a simple cell transfer, BM cells or spleen cells of aged donors could reconstitute the peripheral B cell population of irradiated, thymectomized recipients essentially as effectively as could BM or spleen cells from young donors. However, when BM cells from aged donors and from young donors were mixed and were used to reconstitute a single recipient, the cells from the aged donor were less efficient than were the cells from the young donor. We found that sIgD+ B cells of young donor origin predominated in the peripheral B cell population of the recipient at 3 to 6 wk after cell transfer. In the BM of the recipients, however, there was no difference in the incidence of sIgD+ B cells derived from the young and the old donors. When recipients were reconstituted with a mixture of spleen cells from old and young mice, the sIgD+ cells of young donor allotype showed a tendency to predominate in the peripheral B cell population, although this predominance was not statistically significant. Under such competitive conditions, the spleen cells of aged donors were less efficient than the BM of aged donors in reconstituting the sIgD+ B cell population of the recipient's BM, but were more efficient in reconstituting the splenic sIgD+ cells. Thus, a subtle defect in the B cell precursor population of the BM and the spleen of aged mice has been demonstrated. The role of T cells in the generation of sIgD+ cells was also analyzed.  相似文献   

14.
C. S. Kim  J. R. Preer-Jr    B. Polisky 《Genetics》1994,136(4):1325-1328
The non-Mendelian mutant d48 of Paramecium tetraurelia contains micronuclear wild type A genes, but at autogamy and conjugation proper processing fails and new macronuclei lack A genes. When cloned A genes are injected into the macronucleus of d48, proper processing is restored at the next autogamy; d48 is rescued, becoming permanently wild type. In the present study we have injected portions of the A gene into d48. We find that the ability to rescue extends over a large portion of the gene, with highest activity near a series of 221-bp repeat units in the middle of the gene. Regions outside the A gene are inactive.  相似文献   

15.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   

16.
Y. You  J. Scott    J. Forney 《Genetics》1994,136(4):1319-1324
The Paramecium tetraurelia mutant called d48 has a complete copy of the A surface protein gene in its micronuclei, but lacks the A gene in the macronucleus. Previous experiments have shown that microinjection of a plasmid containing the entire A gene or a large portion of the gene into the macronucleus of d48 rescued the cell line after formation of a new macronucleus (autogamy). Here we show that several different regions of the A gene can rescue d48, but 100% of the activity cannot be localized to a single, defined region. Inversion of a sequence contained within an A gene plasmid had no measurable effect on rescue efficiency and co-injection of two different plasmids results in enhancement of rescue activity despite the non-contiguous form of the DNA sequences. Both these results suggest that no specific product (RNA or protein) with defined end points is made from the rescuing fragment. A unique restriction site was created in the A gene and used to demonstrate that the injected DNA does not serve as a direct template for the synthesis of the new macronuclear DNA. Models to explain the action of the injected DNA are discussed.  相似文献   

17.
Two different immune responses were compared in spleen cells obtained from old and young CBA/HT6J mice. Spleen cells from old mice (23 to 33 months) responded about half as well as did spleen cells from young mice (4 to 10 months) in the adoptive transfer anti-sheep red blood cell (SRBC) plague-forming assay, and caused slightly less than half the uptake of tritiated thymidine in response to phytohemagglutinin (PHA) in vitro. Marrow stem cell from some of the old and young mice whose splenic immune responses were tested were transplanted into irradiated young CBA/CaJ recipients. Seven to 17 weeks later these same immune responses were tested in the spleen cells of these young recipients, and the T6 chromosome marker was used to identify donor cells. Old animals' responses varied greatly, perhaps due to suppressing cells or factors in some individuals. Therefore, cells were never pooled and the responses of receipients were compared to the responses of the donor whose marrow had populated them. The response for a particular old donor, or for the recipients of its stem cells, was divided by the response for the young control used with that donor, or for its stem cell recipients. This was called the old/young ratio. With original donors with an old/young ratio for the SRBC response of (mean +/- S.D.) 0.35 +/- 0.14, The old/young ratio for that same response in the recipients was significantly improved to 1.26 +/- 0.71. In original donors with an old/young ratio for the PHA response of 0.44 +/- 0.17, the old/young ratio in the recipients improved significantly to 0.86 +/- 0.27. Thus, little or none of the decline with age in these immune responses was intrinsic to the old lymphoid stem cells.  相似文献   

18.
Orthotopic ovarian transplantations were done between young (6-wk-old) and aged (17-mo-old) C57BL/6J mice. The percentages of mice mating following surgery from the four possible ovarian transfer combinations were as follows: young into young, 83%; young into aged, 46%; aged into young, 83%; and aged into aged, 36%. The percentages of these mice that were pregnant 10 days following the presence of a vaginal sperm plug were as follows: young into young, 58%; young into aged, 9%; aged into young, 50%; and aged into aged, 0%. Some of the fetuses derived from matings of the above mice were dissociated and their cells prepared for chromosomal smears. No evidence of aneuploidy or mosaicism was found in fetuses derived from ovaries of young or aged mice. Aged ovaries, transferred to either young or aged recipients, were found to have fewer developing follicles and lower weight, which was most apparent in recipients that failed to mate or to get pregnant. Concentrations of luteinizing hormone, follicle-stimulating hormone (FSH), and prolactin in plasma from each of the pregnant recipients were analyzed by radioimmunoassay. The only statistical differences found between the transfer groups occurred in FSH concentrations. Plasma FSH was markedly elevated (P less than 0.005) in young recipients with ovaries transplanted from aged donors, in comparison to young recipients with ovaries from young donors. These data indicate that the aging ovary and uterus play a secondary role in reproductive failure and that the aging hypothalamic-hypophyseal complex is primarily responsible for the loss of fecundity in older female C57BL/6J mice.  相似文献   

19.
Changes in splenic B and T lymphocyte number and mitogenic activity with age were quantitated in (A X C57BL/6)F1 (AB6F1) hybrid mice. Although both the B and T lymphocyte proliferative reactivity to their respective mitogens, lipopolysaccharide (LPS) and phytohemagglutinin (PHA), declined significantly with age, an earlier and more marked reduction was recorded for the T cell response. The decline in B and T lymphocyte mitogenic activity with age could not be correlated with a corresponding reduction in the percentage of splenic B or T lymphocytes. The main focus of this study was to determine if the reduction in T and B lymphocyte mitogenic activity with age results primarily from a mechanism intrinsic to the lymphoid lineage itself or from adverse extracellular factors that increase with age. Bone marrow cells (BMC) derived from individual young and old donor AB6F1 mice were transplanted into the neutral environment of young, lethally irradiated syngeneic recipients. Number and mitogenic activity of splenic T and B lymphocytes were recorded for the original BMC donors as well as for the recipients of the young and old BMC lines 9 mo after the BMC transplants. A predominance of the donor (male) rather than recipient (female) karyotype within the mitogen-responding populations of recipient mice confirmed a donor BMC take. The PHA and LPS response levels exhibited by the old donors were 30% and 70% of those of the young donors, respectively. These differences in PHA and LPS reactivity recorded between young and old donors were maintained between recipients of young and old donor BMC lines. Thus, even under the influence of a young recipient environment, old BMC were incapable of giving rise to mitogen responding cells with a functional competence equivalent to that of their younger counterparts. This finding would lend further support to the theory that an intrinsic mechanism is responsible for the decline in murine mitogenic activity with age.  相似文献   

20.
Aging NZB × SJL (NS) female mice provide a unique model of thymopathology characterized by the intrathymic accumulation of large numbers of mature T and B cells. The purpose of the present work was to examine the possibility that this phenomenon results from the invasion of the thymus by cells from the periphery. Lymphoid cells labeled with chromium-51 or indium-111 were injected into syngeneic recipients to study their patterns of in vivo migration. Lymph node (LN) or spleen cells were found to localize significantly (1–2% of injected radioactivity) into the thymus of 12-month-old NS females but not into that of young recipients or of old NS males. However, intrathymic localization of injected LN cells was observed in castrated NS males which exhibit the same thymopathology as NS females. Both radiolabeled T and B cells were found to enter the thymus of aged NS females but the latter cells about three times less efficiently than the former. Moreover, while thymocytes from young NS females were unable to recirculate to LN, those of old NS females showed increased LN-seeking capacity and part (1%) of them did migrate back into the thymus of old but not young NS females. In additional cell transfer experiments, the intrathymic migration of B cells into old NS females was further documented by using the antibody response to sheep erythrocytes as a tracer. Taken together, these observations indicate that the thymus of aging NS female mice is permeable to recirculating lymphocytes, suggesting that at least part of the mature T and B cells detected in this thymus, are migrants from the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号