首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the accompanying paper we reported that 3,4-dihydroxyphenylethylamine (dopamine) induced light-adaptive retinomotor movements in teleost photoreceptors and that this effect was mediated by D2 dopamine receptors located on the photoreceptors themselves. In this study, we investigated the effects on cone retinomotor movement of three agents that have been reported by others to modulate retinal dopamine release: gamma-aminobutyric acid (GABA), 5-hydroxytryptamine (5-HT, serotonin), and melatonin. We report here that the GABA antagonists bicuculline and picrotoxin induced light-adaptive cone contraction in dark-adapted green sunfish retinas cultured in constant darkness; thus they mimic the effect of light or exogenously applied dopamine. Since their effects were blocked by either the D2 dopamine antagonist sulpiride or by Co2+, it seems likely that these agents act by enhancing retinal dopamine release. The GABA agonist muscimol produced effects opposite to those of GABA antagonists. Muscimol inhibited light-induced cone contraction in previously dark-adapted retinas and induced dark-adaptive cone elongation in light-adapted retinas. These results suggest that in green sunfish retinas, as has been reported for other retinas, GABA inhibits dopamine release. 5-HT induced light-adaptive cone contraction in dark-adapted retinas; thus 5-HT also mimics the effect of light or exogenously applied dopamine. The effect of 5-HT was blocked by sulpiride, Co2+, or the 5-HT antagonist mianserin. These results suggest that 5-HT induces cone contraction by stimulating dopamine release. Melatonin neither inhibited dopamine-induced cone contraction in retinas cultured in the dark nor induced cone elongation in retinas cultured in the light. Our results suggest that both GABA and 5-HT (but not melatonin) affect cone retinomotor movements in green sunfish by modulating dopamine release: GABA by inhibiting and 5-HT by stimulating dopamine release. We report in the companion paper that dopamine induced contraction in isolated cone fragments. Together these observations strongly suggest that dopamine serves as the final extracellular messenger directly inducing light-adaptive cone retinomotor movement, and that GABA and 5-HT affect these movements by modulating dopamine release.  相似文献   

2.
We have been investigating the mechanisms of diurnal and circadian regulation of teleost retinomotor movements. In the retinas of lower vertebrates, photoreceptors and melanin pigment granules of the retinal pigment epithelium (RPE) undergo movements at dawn and dusk. These movements continue to occur at subjective dawn and dusk in animals maintained in constant darkness. Cone myoids contract at dawn and elongate at dusk; RPE pigment disperses into the epithelial cells' long apical processes at dawn and aggregates into the cell bodies at dusk. We report here that forskolin, an adenylate cyclase activator, and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, each induces dark-adaptive cone and RPE retinomotor movements in isolated light-adapted green sunfish retinas cultured in constant light. Forskolin induces a 22-fold elevation in retinal cyclic AMP content. Forskolin- and IBMX-induced movements are inhibited approximately 65% and 95%, respectively, by 3,4-dihydroxyphenylethylamine (dopamine). However, dopamine does not inhibit dark-adaptive movements induced by dibutyryl cyclic AMP. Epinephrine is much less effective than dopamine in inhibiting forskolin-induced movements, while phenylephrine and clonidine are totally ineffective. These results are consistent with our previous findings that treatments that increase intracellular cyclic AMP content promote dark-adaptive retinomotor movement. They further suggest that dopamine inhibits adenylate cyclase activity in photoreceptors and RPE cells and thereby favors light-adaptive retinomotor movements.  相似文献   

3.
In the eyes of lower vertebrates, retinal photoreceptors and melanin pigment granules of the retinal pigment epithelium (RPE) exhibit characteristic retinomotor movements in response to changes in ambient illumination and to signals from an endogenous circadian clock. We previously reported that 3,4-dihydroxyphenylethylamine (dopamine) mimicked the effect of light on these movements in photo-receptors and RPE cells of green sunfish, Lepomis cyanellus, by interacting with D2 dopaminergic receptors. Here, we report that dopamine also mimics the effect of light on cone and RPE retinomotor movements in bullfrogs, Rana catesbeiana, i.e., dopamine induces cone contraction and RPE pigment dispersion. Dopamine induced cone contraction in isolated dark-adapted bullfrog retinas incubated in constant darkness in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). This effect of dopamine was inhibited by a D2 but not a D1 antagonist and mimicked by a D2 but not a D1 agonist. These results suggest that induction of cone contraction by dopamine is mediated by D2 dopaminergic receptors and that cone adenylate cyclase activity is inhibited. Thus, dopamine acts via the same type of receptor in both bullfrog and green sunfish retinas to induce cone contraction. In contrast, dopamine influences RPE retinomotor movement via different receptors in fish and bullfrog. Dopamine induced light-adaptive pigment dispersion in isolated dark-adapted bullfrog RPE-eyecups incubated in constant darkness in normal Ringer's solution. Because the retina was not present, these experiments demonstrate a direct effect of dopamine on bullfrog RPE. This effect of dopamine on bullfrog RPE was inhibited by a D1 but not a D2 antagonist and mimicked by a D1 but not a D2 agonist. Furthermore, agents that increase the concentration of intracellular cyclic AMP also induced pigment dispersion in dark-adapted bullfrog RPE-eyecups incubated in the dark. These results suggest that dopamine induces pigment dispersion in bullfrog RPE via D1 dopaminergic receptors. Thus, dopamine acts via different receptors on bullfrog (D1) versus green sunfish (D2) RPE to induce pigment dispersion. In addition, inhibitor studies indicate that pigment dispersion is actin dependent in teleost but not in bullfrog RPE. Dopamine-induced pigment dispersion was inhibited by cytochalasin D in isolated RPE sheets of green sunfish but not in RPE-eyecups of bullfrogs. Together, these observations indicate that dopamine mimics the effect of light on cone and RPE retinomotor movements in both fish and bullfrogs. However, in the RPE, different receptors mediate the effect of dopamine, and different cytoskeletal mechanisms are used to affect pigment transport.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
Abstract: In the retinas of teleost fish, cone photoreceptors change shape in response to light and circadian signals. They elongate in the dark, contract in the light, and under conditions of constant darkness undergo appropriate movements at expected dusk and dawn. Dopamine induces cones to contract, thus mimicking the effect of light or expected dawn. To identify the receptor subtype responsible for mediating dopamine regulation of cone retinomotor movements, we have carried out pharmacological studies using isolated fragments of teleost cones consisting of cone inner segments-cone outer segments (CIS-COS). Isolated CIS-COS retain the ability to elongate in dark culture and contract when subsequently exposed to light or dopamine. We report that dark-induced elongation of CIS-COS was inhibited by dopamine and its agonists with an effectiveness ranking of dopamine = quinpirole > bromocriptine ⋙SKF-38393. After 60 min of elongation in dark culture, CIS-COS myoids contracted when subsequently cultured in the dark with dopamine or quinpirole. Quinpirole-induced inhibition of elongation and quinpirole-induced contraction were completely blocked by clozapine at 1 µ M or by sulpiride at 100 µ M . These effectiveness profiles for dopamine agonists and antagonists suggest that dopamine regulation of cone retinomotor movement is mediated by a D4-like receptor.  相似文献   

6.
In the retinas of many species of lower vertebrates, retinal photoreceptors and pigment epithelium pigment granules undergo daily movements in response to both diurnal, and in the case of teleost cone photoreceptors, endogenous circadian signals. Typically, these cone movements take place at dawn and at dusk when teleosts are maintained on a cyclic light (LD) regime, and at expected dawn and expected dusk when animals are maintained in continuous darkness (DD). Because these movements are so strictly controlled, they provide an overt indicator of the stage of the underlying clock mechanism. In this study we report that both light-induced and circadian-driven cone myoid movements in the Midas cichlid (Cichlasoma citrinellum), occur normally in vitro. Many of the features of retinomotor movements found in vivo also occur in our culture conditions, including responses to light and circadian stimuli and dopamine. Circadian induced predawn contraction and maintenance of expected day position in response to circadian modulation, are also normal. Our studies suggest that circadian regulation of cone myoid movement in vitro is mediated locally by dopamine, acting via a D2 receptor. Cone myoid contraction can be induced at midnight and expected mid-day by dark culture with dopamine or the D2 receptor agonist LY171555. Further, circadian induced predawn contraction can be increased with either dopamine or LY171555, or may be reversed with the dopamine D2 antagonist, sulpiride. Sulpiride will also induce cone myoid elongation in retinal cultures at expected mid- day, but will not induce cone myoid elongation at dusk. In contrast, circadian cone myoid movements in vitro were unaffected by the D1 receptor agonist SCH23390, or the D1 receptor antagonist SKF38393. Our short-term culture experiments indicate that circadian regulation of immediate cone myoid movement does not require humoral control but is regulated locally within the retina. The inclusion of dopamine, or dopamine receptor agonists and antagonists in our cultures, has indicated that retinal circadian regulation may be mediated by endogenously produced dopamine, which acts via a D2 mechanism.  相似文献   

7.
In lower vertebrates, cone retinomotor movements occur in response to changes in lighting conditions and to an endogenous circadian clock. In the light, cone myoids contract, while in the dark, they elongate. In order to test the hypothesis that melatonin and dopamine may be involved in the regulation of cone movement, we have used an in vitro eyecup preparation from Xenopus laevis that sustains light- and dark-adaptive cone retinomotor movement. Melatonin mimics darkness by causing cone elongation. Dark- and melatonin-induced cone elongation are blocked by dopamine. Dopamine also stimulates cone contraction in dark-adapted eyecups. The effect of dopamine appears to be mediated specifically by a dopamine receptor, possibly of the D2 type. The dopamine agonist apomorphine and the putative D2 agonist LY171555 induced cone contraction. In contrast, the putative D1 agonist SKF38393-A and specific alpha 1-, alpha 2-, and beta-adrenergic receptor agonists were without effect. Furthermore, the dopamine antagonist spiroperidol not only blocked light-induced cone contraction, but also stimulated cone elongation in the light. These results suggest that dopamine is part of the light signal for cone contraction, and that its suppression is part of the dark signal for cone elongation. Melatonin may affect cone movement indirectly through its influence on the dopaminergic system.  相似文献   

8.
We have examined the effects of changes in extracellular ionic composition on cone and retinal pigment epithelium (RPE) retinomotor movements in cultured isolated teleost retinas. In vivo, the myoid portion of teleost cones contracts in the light and elongates in the dark; RPE pigment disperses in the light and aggregates in the dark. In vitro, cones of dark-adapted (DA) retinas cultured in constant darkness contracted spontaneously to their light-adapted (LA) positions if the culture medium contained greater than or equal to 10(-3)M Cao++. DA cones retained their long DA positions in a medium containing less than or equal to 10(-6)M Cao++. Low [Ca++]o (10(-5)-10(-7)M) also permitted darkness to induce cone elongation and RPE pigment aggregation. Light produced cone contraction even in the absence of Cao++, but the extent of contraction was reduced if [Ca++]o was less than 10(-3) M. Thus, full contraction appeared to require the presence of external Ca++. High [K+]o (greater than or equal to 27 mM) inhibited both light-induced and light-independent Ca++-induced cone contraction. However, low [Na+]o (3.5 mM) in the presence of less than or equal to 10(-6)M Cao++ did not mimic light onset by inducing cone contraction in the dark. High [K+]o also promoted dark-adaptive cone and RPE movements in LA retinas cultured in the light. All results obtained in high [K+]o were similar to those observed when DA or LA retinas were exposed to treatments that elevate cytoplasmic cyclic 3',5'-adenosine monophosphate (cAMP) content.  相似文献   

9.
As a test of the hypothesis that cyclic nucleotides play a role in the regulation of retinomotor movements and disc shedding in the photoreceptor-pigment epithelial complex, we have used an in vitro eyecup preparation that sustains both disc shedding and cone retinomotor movements, Eyecups were prepared in white light from animals in which both shedding and cone movement had been blocked by 4 d of constant-light treatment. In eyecups incubated for 3 h in light, disc shedding was negligible and cones remained in the light-adapted (contracted) position. In eyecups incubated in darkness, however, a massive shedding response (dominated by rod photoreceptors) was induced, and at the same time cone photoreceptors elongated to their dark-adapted position. In eyecups incubated in light dbcAMP promoted cone elongation and thus mimicked darkness; the dbcAMP effect was potentiated by the phosphodiesterase inhibitors papaverine and 3- isobutylmethylxanthine. In eyecups incubated in darkness, on the other hand, both phosphodiesterase inhibitors and dbcAMP reduced the phagosome content of the pigment epithelium. The effects of dbcAMP on the cone elongation and rod shedding appear to be specific in that dbcGMP, adenosine, and adenosine 5'-monophosphate had no significant effect. Our results suggest that cAMP plays a role in the regulation of both retinomotor movements and disc shedding.  相似文献   

10.
In several parts of the nervous system, adenosine has been shown to function as an extracellular neuromodulator binding to surface receptors on target cells. This study examines the possible role of adenosine in mediating light and circadian regulation of retinomotor movements in teleost cone photoreceptors. Teleost cones elongate in the dark and contract in the light. In continuous darkness, the cones continue to elongate and contract at subjective dusk and dawn in response to circadian signals. We report here that exogenous adenosine triggers elongation (the dark/night movement) in isolated cone inner segment-cone outer segment preparations (CIS-COS) in vitro. Agonist/antagonist potency profiles indicate that adenosine's effect on cone movement is mediated by an A2-like adenosine receptor, which like other A2 receptors enhances adenylate cyclase activity. Although closest to that expected for A2 receptors, the antagonist potency profile for CIS-COS does not correspond exactly to any known A2 receptor subtype, suggesting that the cone receptor may be a novel A2 subtype. Our findings are consistent with previous reports that retinal adenosine levels are higher in the dark, and further suggest that adenosine could act as a neuromodulatory "dark signal" influencing photoreceptor metabolism and function in the fish retina.  相似文献   

11.
Cone and rod photoreceptors utilize cyclic guanosine monophosphate (cGMP) in the light regulation of membrane polarization. The prototype for visual transduction is established for rod photoreceptors, which utilize a cascade of reactions to regulate a cyclic nucleotide phosphodiesterase (PDE) (EC 3.1.4.17) and thereby control the intracellular concentration of cGMP. Although cones appear to utilize a comparable cGMP cascade for their phototransduction, evidence exists that the PDE from cone photoreceptors may be different from that of rods. Dissociated cone photoreceptors, isolated retinas, and cone outer segments from the lizard, Anolis carolinensis, have been used to identify and characterize a PDE enzyme complex that shares several features in common with the rod outer segment (ROS) PDE complex. Immunoadsorption and sodium dodecyl sulfate-polyacrylamide gel electrophoresis have identified a subunit of lizard cone PDE that has an apparent electrophoretic mobility of 84 kDa and a subunit of lizard rod PDE that migrates at approximately 90 kDa. The lizard cone PDE complex is similar in size, extraction, activation, and immunological characteristics to the PDE complex of rod photoreceptors from lizard, bovine, and human retinas. The lizard cone PDE complex, and perhaps that from cone photoreceptors in general, differs from that of ROS in its chromatographic properties on anion-exchange resins. The sharing of physical and activation properties of the rod and cone PDE complex is compatible with the phototransduction process occurring by a similar mechanism in both cell types. The differences in light sensitivity and speed of response may be attributable to features of the individual proteins that form the PDE complexes of rods and cones or to other undisclosed features of the respective cascades.  相似文献   

12.
The retinal photoreceptors of the red-backed salamander (Plethodon cinerus) have been studied by light and electron microscopy. Rods and single cones are present in this duplex retina in a ratio of about 25:1. The photoreceptors in this amphibian species are much larger than is reported for most vertebrates. In the light-adapted state, rods reach deep into the retinal epithelial (RPE) layer. The rod outer segment is composed of discs of uniform diameter displaying several very deep incisors. The rod inner segment displays a distal elliposid of mitochondria and a short stout myoid region. Rod nuclei are electron dense and often protrude through the external limiting membrane. Rod synaptic spherules are large and display several invaginated synaptic sites as well as superficial synapses. It is felt that the rods do not undergo retinomotor movements. The cone photoreceptors are much smaller than the rods and display a tapering outer segment, an unusual modified ellipsoid and a large parabolid of glycogen in the inner segment. Cone nuclei are less electron dense than rods and are located at all levels within the outer nuclear layer. The synaptic pedicle of the cones is larger, more electron lucent and display more synaptic sites (both invaginated and superficial) than that of rods. It is felt that cone photomechanical responses are minimal.  相似文献   

13.
In the retinal pigment epithelium (RPE) of lower vertebrates, melanin pigment granules migrate in and out of the cells' long apical projections in response to changes in light condition. When the RPE is in its normal association with the retina, light onset induces pigment granules to disperse into the apical projections; dark onset induces pigment granules to aggregate into the cell bodies. However, when the RPE is separated from the retina, pigment granule movement in the isolated RPE is insensitive to light onset. It thus seems likely that a signal from the retina communicates light onset to the RPE to initiate pigment dispersion. We have examined the nature of this retina-to-RPE signal in green sunfish, Lepomis cyanellus. In isolated retinas with adherent RPE, light-induced pigment dispersion in the RPE is blocked by treatments known to block Ca2+-dependent transmitter release in the retina. In addition, the medium obtained from incubating previously dark-adapted retinas in the light induces light-adaptive pigment dispersion when added to isolated RPE. In contrast, the medium obtained from incubating dark-adapted retinas in constant darkness does not affect pigment distribution when added to isolated RPE. These results are consistent with the idea that RPE pigment dispersion is triggered by a substance that diffuses from the retina at light onset. The capacity of the conditioned medium from light-incubated retinas to induce pigment dispersion in isolated RPE is inhibited by a D2 dopamine antagonist, but not by D1 or alpha-adrenergic antagonists. Light-induced pigment dispersion in whole RPE-retinas is also blocked by a D2 dopamine antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Circadian rhythms in the green sunfish retina   总被引:4,自引:0,他引:4       下载免费PDF全文
We investigated the occurrence of circadian rhythms in retinomotor movements and retinal sensitivity in the green sunfish, Lepomis cyanellus. When green sunfish were kept in constant darkness, cone photoreceptors exhibited circadian retinomotor movements; rod photoreceptors and retinal pigment epithelium (RPE) pigment granules did not. Cones elongated during subjective night and contracted during subjective day. These results corroborate those of Burnside and Ackland (1984. Investigative Ophthalmology and Visual Science. 25:539-545). Electroretinograms (ERGs) recorded in constant darkness in response to dim flashes (lambda = 640 nm) exhibited a greater amplitude during subjective night than during subjective day. The nighttime increase in the ERG amplitude corresponded to a 3-10-fold increase in retinal sensitivity. The rhythmic changes in the ERG amplitude continued in constant darkness with a period of approximately 24 h, which indicates that the rhythm is generated by a circadian oscillator. The spectral sensitivity of the ERG recorded in constant darkness suggests that cones contribute to retinal responses during both day and night. Thus, the elongation of cone myoids during the night does not abolish the response of the cones. To examine the role of retinal efferents in generating retinal circadian rhythms, we cut the optic nerve. This procedure did not abolish the rhythms of retinomotor movement or of the ERG amplitude, but it did reduce the magnitude of the nighttime phases of both rhythms. Our results suggest that more than one endogenous oscillator regulates the retinal circadian rhythms in green sunfish. Circadian signals controlling the rhythms may be either generated within the eye or transferred to the eye via a humoral pathway.  相似文献   

15.
The objective of this study was to investigate the effects of taurine on cone retinomotor movements and the responses of cone-driven horizontal cells in dark-adapted teleost retina. In isolated goldfish retina preparations maintained in the dark, cones spontaneously contracted, and the responses of horizontal cells were suppressed. Addition of 5 mM taurine to the physiological solution blocked the spontaneous contraction of cones in the dark but did not block the dark-suppression of horizontal cell responses. These results indicate that the mechanism that leads to horizontal cell dark suppression is not sensitive to taurine. Although both cone retinomotor position and horizontal cell responsiveness are known to be modulated by dopamine, the present results do not support the hypothesis that taurine inhibits dopamine release in the dark because only spontaneous cone contraction was affected by taurine. These results also indicate that spontaneous cone contraction in the dark is not the cause of horizontal cell dark suppression because, in the presence of taurine, cones were elongated yet horizontal cell responses were still suppressed. Consequently, these results make it clear that horizontal cell dark suppression is not an artifact produced by incubating isolated teleost retina preparations in taurine-free physiological solution.  相似文献   

16.
Agents which elevate cyclic AMP (cAMP) cause teleost retinal rods to contract. We have characterized this cAMP effect and have evaluated the role of the cytoskeleton in cyclic nucleotide-induced contraction, using actin and microtubule inhibitors. The necklike myoid region of the rod contracts in the dark and elongates in the light. If long, light-adapted rods are cultured with cAMP analogs and IBMX, rods contract to their short dark-adapted position. Cyclic nucleotide- induced rod contraction occurs in constant light, requires a phosphodiesterase inhibitor, and is specific to cAMP (db cyclic GMP, 8- bromocyclic GMP, 5'AMP, and adenosine have no effect on rod myoid length). Cyclic AMP effects on rod length are consistent with observations from several species that cAMP levels are higher in dark- adapted than in light-adapted retinas. Since rod myoids contain paraxially aligned actin filaments and microtubules, we have used the motility inhibitors cytochalasin D and cold and nocodazole to investigate the roles of these cytoskeletal elements in rod contraction. Cyclic nucleotide-induced contraction is not inhibited when myoid microtubules are disrupted with cold and nocodazole treatments, but contraction is blocked if myoid actin filaments are disrupted with cytochalasin D. Thus, we conclude that actin filaments, but not microtubules, are required for rod contraction. We propose that rod contraction in vivo is triggered by a rise of cytoplasmic cAMP at onset of darkness and that this contraction is mediated by an actin- dependent mechanism.  相似文献   

17.
In teleosts, the basal part of the retinal pigment epithelium (RPE) is relatively smooth, i. e., it is free of basal membrane infoldings. In the featherback, Notopterus notopterus, whereas this is the situation in light adaptation, during dark-adaptation, especially when kept for prolonged periods (6-9 hour), numerous infoldings appear at the basal region, as found uniquely by transmission electron microscopy. In this teleost, during retinomotor movements, the rods move vitreally during dark-adaptation, while the cones do not elongate, and remain stationary in both light- and dark-adaptation. The significance of the appearance of basal infoldings in dark-adapted RPE is explained in terms of the pattern of retinomotor responses and the features of RPE and photoreceptors in this species. It is suggested that (1) the thick, impervious tapetal layer present in the RPE, (2) the unusual position of the photoreceptors in the visual cell layer of dark-adapted retina, and (3) the presumably high demand for glucose and O2 of the outer retina during dark-adaptation might contribute to cause this phenomenon in this species. The available evidence tend to associate this phenomenon with the involvement of the RPE in nutrient and O2 delivery to the photoreceptors via the basal infoldings of the RPE in dark-adapted state in this species. This has not been reported for any other teleosts to date.  相似文献   

18.
Summary The retina and pigment epithelium of the bullfrog (Rana catesbiana) were studied with the scanning electron microscope. Fixed-dehydrated tissues were critical point dried with CO2, then cracked in the plane of the long axis of the photoreceptors. The cellular layers of the retina and the lateral surfaces of pigment epithelial cells were visualized. The four major types of frog photoreceptor were identified: red rod, green rod, single cone, and double cone. Cone myoids were observed to be contracted in light-adapted retinas and elongated in more dark adapted retinas.This work was supported by a career development award EY-18,083 to the author and research grant EY 00468 to Dr. Kenneth T. Brown.The author gratefully acknowledges the skillful technical assistance of Ms. Maria T. Maglio.  相似文献   

19.
BACKGROUND: Mice lacking rod and cone photoreceptors (rd/rd cl) are still able to regulate a range of responses to light, including circadian photoentrainment, the pupillary light reflex, and suppression of pineal melatonin by light. These data are consistent with the presence of a novel inner-retinal photoreceptor mediating non-image-forming irradiance detection. RESULTS: We have examined the nature and extent of intrinsic light sensitivity in rd/rd cl retinae by monitoring the effect of light stimulation (470 nm) on intracellular Ca(2+) via FURA-2 imaging. Using this approach, which does not rely on pharmacological or surgical isolation of ganglion cells from the rod and cone photoreceptors, we identified a population of light-sensitive neurons in the ganglion cell layer (GCL). Retinal illumination induced an increase of intracellular Ca(2+) in approximately 2.7% of the neurons. The light-evoked Ca(2+) fluxes were dependent on the intensity and duration of the light stimulus. The light-responsive units formed an extensive network that could be uncoupled by application of the gap junction blocker carbenoxolone. Three types of light-evoked Ca(2+) influx were observed: sustained, transient, and repetitive, which are suggestive of distinct functional classes of GCL photoreceptors. CONCLUSIONS: Collectively, our data reveal a heterogeneous syncytium of intrinsically photosensitive neurons in the GCL coupled to a secondary population of light-driven cells, in the absence of rod and cone inputs.  相似文献   

20.
There are two distinct classes of image-forming photoreceptors in the vertebrate retina: rods and cones. Rods are able to detect single photons of light whereas cones operate continuously under rapidly changing bright light conditions. Absorption of light by rod- and cone-specific visual pigments in the outer segments of photoreceptors triggers a phototransduction cascade that eventually leads to closure of cyclic nucleotide-gated channels on the plasma membrane and cell hyperpolarization. This light-induced change in membrane current and potential can be registered as a photoresponse, by either classical suction electrode recording technique1,2 or by transretinal electroretinogram recordings (ERG) from isolated retinas with pharmacologically blocked postsynaptic response components3-5. The latter method allows drug-accessible long-lasting recordings from mouse photoreceptors and is particularly useful for obtaining stable photoresponses from the scarce and fragile mouse cones. In the case of cones, such experiments can be performed both in dark-adapted conditions and following intense illumination that bleaches essentially all visual pigment, to monitor the process of cone photosensitivity recovery during dark adaptation6,7. In this video, we will show how to perform rod- and M/L-cone-driven transretinal recordings from dark-adapted mouse retina. Rod recordings will be carried out using retina of wild type (C57Bl/6) mice. For simplicity, cone recordings will be obtained from genetically modified rod transducin α-subunit knockout (-/-) mice which lack rod signaling8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号