首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prepared six monoclonal antibodies (mAbs) for type 1 polioviruses, and analysed their neutralizing specificities for use in safety tests in oral poliomyelitis vaccine (OPV) production. Pools of two or more individual mAbs showed high neutralizing activity against high-titre (approximately 10(7) CCID (50)/25 microl) of Sabin type 1 virus. It was demonstrated that the pooled mAbs can be utilized effectively in detection tests of adventitious viruses, which are among the safety tests in OPV production. Moreover, some pooled mAbs were shown to be capable of detecting very small amounts of type 1 virulent viruses and mutants in high-titre Sabin type 1 virus suspensions. Neutralizing antibody titres of these pooled mAbs decreased with increasing numbers of mutants containing neurovirulent activity in high-titre Sabin type 1 viruses which were repeatedly passaged in culture. It is expected that these pooled mAbs will contribute greatly to safety tests for OPV production.  相似文献   

2.
Mutant analysis by polymerase chain reaction and restriction enzyme cleavage (MAPREC) was used to study sequence heterogeneity and stability in attenuated poliovirus type 3 at positions in which the vaccine virus differs from its wild-type progenitor. Of seven genomic positions tested, only two (positions 472 and 2493) show nucleotide heterogeneity. Propagation of the vaccine virus in cell cultures leads to rapid selection of virus with reversions at these two positions of the genome. The relative abundance of reversions at position 472 correlates with the results of monkey neurovirulence tests, while the mutation at position 2493 is not directly associated with neurovirulence of the virus in monkeys. Instead, the abundance of mutations at the latter position correlates with the source of the seed virus and its passage level. These results further indicate that MAPREC at position 472 can be used to assess the quality of poliovirus type 3 vaccine.  相似文献   

3.
J Furesz 《Biologicals》2006,34(2):87-90
Using virus grown in monkey kidney cells, Salk and his colleagues developed an inactivated poliovirus vaccine (IPV) in 1952. A large-scale field trial showed the vaccine to be safe and highly immunogenic in children, but soon after the vaccine became generally available in 1955, cases of paralytic disease were reported in recipients. Investigations showed that almost all the cases occurred in children who had received vaccine from one particular manufacturer. Extensive studies attributed the disaster to problems with inactivation. Addition of a Seitz filtration step midway during formalin inactivation and extension of the inactivation period resulted in a safe vaccine. No further paralytic cases were observed following the use of several hundred million doses of this improved vaccine. Thus, IPV was safe and caused a dramatic decline in the incidence of poliomyelitis in countries where it was used. A second generation IPV is produced in fermentors using well-characterized cell strains or continuous cell lines. The major breakthrough in the development of live poliovirus vaccine was the application of tissue culture methods for virus attenuation. By 1959 several candidate live oral poliovirus vaccines (OPV) had been developed. These were clinically tested in millions of individuals and found to be safe and effective. Since the attenuated virus strains developed by Koprowski and Cox were more neurotropic in monkeys than the Sabin strains, only the latter was licensed in the USA in 1961 and endorsed shortly after by the World Health Organization (WHO). The widespread use of Sabin's OPV in many countries hastened the development of International Requirements by WHO for OPV in 1962 to define the criteria that ensured the uniformity of batches produced by different manufacturers. These have been updated continuously in light of new information and quality control procedures. Extensive field trials have shown the risk of OPV associated polio to be less than 0.3 per million doses administered.  相似文献   

4.
We determined the complete genomic sequences of nine type 1 immunodeficient vaccine-derived poliovirus (iVDPV) isolates obtained over a 337-day period from a poliomyelitis patient from Taiwan with common variable immunodeficiency. The iVDPV isolates differed from the Sabin type 1 oral poliovirus vaccine (OPV) strain at 1.84% to 3.15% of total open reading frame positions and had diverged into at least five distinct lineages. Phylogenetic analysis suggested that the chronic infection was initiated by the fifth and last OPV dose, given 567 days before onset of paralysis, and that divergence of major lineages began very early in the chronic infection. Key determinants of attenuation in Sabin 1 had reverted in the iVDPV isolates, and representative isolates of each lineage showed increased neurovirulence for PVR-Tg21 transgenic mice. None of the isolates had retained the temperature-sensitive phenotype of Sabin 1. All isolates were antigenic variants of Sabin 1, having multiple amino acid substitutions within or near neutralizing antigenic sites 1, 2, and 3a. Antigenic divergence of the iVDPV variants from Sabin 1 followed two major independent evolutionary pathways. The emergence of distinct coreplicating lineages suggests that iVDPVs can replicate for many months at separate sites in the gastrointestinal tract. Some isolates had mosaic genome structures indicative of recombination across and within lineages. iVDPV excretion apparently ceased after 30 to 35 months of chronic infection. The appearance of a chronic VDPV excretor in a tropical, developing country has important implications for the strategy to stop OPV immunization after eradication of wild polioviruses.  相似文献   

5.
A 3-year-old boy with agammaglobulinemia developed paralytic poliomyelitis on day 553 after being fed poliovaccine. Non-vaccine-like type 2 polioviruses were isolated from 22 stools obtained within 684 days after the onset of illness. Antigenic variations were observed among these viruses. The non-vaccine-like virus isolated 1 week after the onset of paralysis differed in virulence from the Sabin type 2 vaccine strain in the neurovirulence test in monkeys, and did not have the same antigenic character as the wild virulent strains. Another virus isolated on day 348 before the onset of illness was also classified as non-vaccine-like. However, the Sabin type 2 strain was shown to be homologous with this strain by the McBride test. Some Sabin-like particles were found in this stock virus. We may conclude that the non-vaccine-like virus isolates were derived from Sabin vaccine by antigenic variation that occurred during long-term multiplication in the intestinal tract.  相似文献   

6.
The genetic properties of strain K/2002, isolated from fecal samples of a 7-month-old child who had received his first oral poliovirus vaccine (OPV) dose at the age of 3 months, are described. Preliminary sequencing characterization of isolate K/2002 revealed an S3/S2 recombination event at the 3' end of the VP1 coding region. A recombination event resulted in the introduction of six Sabin 2 amino acid residues in a Sabin 3 genomic background. Furthermore, mutations associated with loss of the attenuated phenotype of Sabin 3 strains have been identified in the genome of isolate K/2002. The data presented here emphasize the need for careful planning of vaccination strategies, which involve stopping OPV administration in regions that are certified to be polio-free.  相似文献   

7.
In 2001, highly evolved type 1 circulating vaccine-derived poliovirus (cVDPV) was isolated from three acute flaccid paralysis patients and one contact from three separate communities in the Philippines. Complete genomic sequencing of these four cVDPV isolates revealed that the capsid region was derived from the Sabin 1 vaccine strain but most of the noncapsid region was derived from an unidentified enterovirus unrelated to the oral poliovirus vaccine (OPV) strains. The sequences of the cVDPV isolates were closely related to each other, and the isolates had a common recombination site. Most of the genetic and biological properties of the cVDPV isolates were indistinguishable from those of wild polioviruses. However, the most recently identified cVDPV isolate from a healthy contact retained the temperature sensitivity and partial attenuation phenotypes. The sequence relationships among the isolates and Sabin 1 suggested that cVDPV originated from an OPV dose given in 1998 to 1999 and that cVDPV circulated along a narrow chain of transmission. Type 1 cVDPV was last detected in the Philippines in September 2001, and population immunity to polio was raised by extensive OPV campaigns in late 2001 and early 2002.  相似文献   

8.
9.
Sixteen type 1 poliovirus strains were isolated from a sewage disposal plant located downstream of the Oyabe River in Japan between October 1993 and September 1995. The isolates were intratypically differentiated as vaccine-derived strains. Neutralizing antigenicity analysis with monoclonal antibodies and estimation of neurovirulence by mutant analysis by PCR and restriction enzyme cleavage (MAPREC) were performed for 13 type 1 strains of these isolates. The isolates were classified into three groups. Group I (five strains) had a variant type of antigenicity and neurovirulent phenotype. Group II (four strains) had the vaccine type of antigenicity and neurovirulent phenotype. Group III (four strains) had the vaccine type of antigenicity and an attenuated phenotype. Furthermore, it was demonstrated that the virulent isolates were neutralized by human sera obtained after oral poliomyelitis vaccine (OPV) administration, and the sera of rats immunized with inactivated poliovirus vaccine. Although vaccination was effective against virulent polioviruses, virulent viruses will continue to exist in the environment as long as OPV is in use.  相似文献   

10.
11.
Vadim I Agol 《Biologicals》2006,34(2):103-108
The Sabin oral poliovaccine (OPV) is extremely efficacious and safe, despite its inherent genetic instability. While reversion to nearly wild-type phenotype regularly occurs soon after the onset of OPV reproduction in the gastro-intestinal tract of vaccine recipients or their contacts, this is usually not a big problem, provided the vaccine is used either for mass vaccination or in populations with a relatively high level of anti-polio immunity. However, if these conditions are not met, the vaccine viruses are likely to be converted into highly transmissible agents with a nearly wild-type level of neurovirulence. Moreover, OPV viruses may persist and evolve even in adequately immunized populations. The current strategy for the "endgame" of poliovirus eradication envisions cessation of OPV usage shortly after the last isolation of a wild poliovirus. If implemented, this strategy would result in rapid growth of non-immune human populations at the time when OPV derivatives would very likely be persisting. Therefore, the planned cessation of OPV vaccination is associated with a very high, and in the author's opinion, unacceptable risk of polio outbreaks caused by OPV derivatives. The only currently available tool to curb such outbreaks is OPV, which should have been used at a global scale. Safe discontinuation of OPV vaccination will be possible only after an efficient new vaccine or an anti-poliovirus drug is available. To achieve this goal, stimulation of poliovirus research and elimination of organizational and financial obstacles preventing it are needed.  相似文献   

12.
Retrospective molecular and phenotypic characterization of a vaccine-derived poliovirus (VDPV) type 1 isolate (7/b/97) isolated from sewage in Athens, Greece, in 1997 is reported. VP1 sequencing of this isolate revealed 1.87% divergence from the VP1 region of reference strain Sabin 1, while further genomic characterization of isolate 7/b/97 revealed a recombination event in the nonstructural part of the genome between a vaccine strain and a nonvaccine strain probably belonging to Enterovirus species C. Amino acid substitutions commonly found in previous studies were identified in the capsid coding region of the isolate, while most of the attenuation and temperature sensitivity determinants were reverted. The ultimate source of isolate 7/b/97 is unknown. The recovery of such a highly divergent derivative of a vaccine strain emphasizes the need for urgent implementation of environmental surveillance as a supportive procedure in the polio surveillance system even in countries with high rates of OPV coverage in order to prevent cases or even outbreaks of poliomyelitis that otherwise would be inevitable.  相似文献   

13.
The Netherlands Vaccine Institute (NVI) developed the micro-carrier technology for large-scale production of IPV in the late 1960s and has used this technology successfully to produce IPV as well as DTP-IPV for the national immunization program in the Netherlands. As a public sector organization, and as one of the Millennium Development Goals, NVI has supported over the years access to vaccine technology like DTP and Hib for vaccine manufacturers in developing countries. In line with this role as a resource institute, NVI has recently been approached by a number of vaccine manufacturers, predominantly from developing countries, for transfer of IPV technology to meet the anticipated increase in demand for IPV following OPV cessation. Since WHO encourages new manufacturers to use the attenuated Sabin virus instead of wild polio strains in the production of IPV, NVI decided to respond positively to this WHO policy. The existing NVI experience in large-scale production of IPV and OPV using Vero cell based micro-carrier technology and its experience with experimental Sabin-IPV is an attractive start for the development of Sabin-IPV. This paper discusses the approach followed and the experience already gained in the project, as well as factors critical to its success.  相似文献   

14.
Minimizing the risk of poliovirus transmission from the poliovirus facility to an increasingly susceptible community is crucial when global poliovirus transmission and OPV use stops. Community risks of exposure to wild poliovirus as well as Sabin strains are highest from facility personnel who are unknowingly contaminated or infected. Immunization with OPV or IPV prevents poliomyelitis, but neither vaccine fully inhibits silent infection of the gut. Facility environments maintained at low relative humidity (<50%) may reduce poliovirus survival and inhalation risk. Circulating antibodies reduce personnel infection risks from injection or virus entry through breaks in skin or mucous membranes. Community exposure risk through inhalation of contaminated air effluent is likely low in most modern facilities. Community risks through ingestion of liquid effluents are facility-specific and may range from high to low. This assessment of community risks, when combined with assessments of facility-specific hazards and the consequences of wild or Sabin poliovirus transmission, provides the foundation for effective risk management.  相似文献   

15.
The Sabin oral poliovirus vaccine (OPV) readily undergoes changes in antigenic sites upon replication in humans. Here, a set of antigenically altered descendants of the three OPV serotypes (76 isolates) was characterized to determine the driving forces behind these changes and their biological implications. The amino acid residues of OPV derivatives that lie within or close to the known antigenic sites exhibited a marked tendency to be replaced by residues characteristic of homotypic wild polioviruses, and these changes may occur very early in OPV evolution. The specific amino acid alterations nicely correlated with serotype-specific changes in the reactivity of certain individual antigenic sites, as revealed by the recently devised monoclonal antibody-based enzyme-linked immunosorbent assay. In comparison to the original vaccine, small changes, if any, in the neutralizing capacity of human or rabbit sera were observed in highly diverged vaccine polioviruses of three serotypes, in spite of strong alterations of certain epitopes. We propose that the common antigenic alterations in evolving OPV strains largely reflect attempts to eliminate fitness-decreasing mutations acquired either during the original selection of the vaccine or already present in the parental strains. Variability of individual epitopes does not appear to be primarily caused by, or lead to, a significant immune evasion, enhancing only slightly, if at all, the capacity of OPV derivatives to overcome immunity in human populations. This study reveals some important patterns of poliovirus evolution and has obvious implications for the rational design of live viral vaccines.  相似文献   

16.
M Kohara  S Abe  T Komatsu  K Tago  M Arita    A Nomoto 《Journal of virology》1988,62(8):2828-2835
Biological tests including the monkey neurovirulence test performed on recombinants between the virulent Mahoney and attenuated Sabin 1 strains of type 1 poliovirus indicated that the genome region encoding mainly the viral capsid proteins had little correlation with the neurovirulence or attenuation phenotype of the virus. The results suggested that new vaccine strains of type 2 and type 3 polioviruses may be constructed in vitro by replacing the sequence encoding the antigenic determinants in viral capsid proteins of the Sabin 1 genome by the corresponding sequences of the type 2 and type 3 genome, respectively. Accordingly, we constructed recombinants between the Sabin 1 and Sabin 3 strains of poliovirus in which genome sequences of the Sabin 1 strain encoding most or all capsid proteins were replaced by the corresponding genome sequences of the Sabin 3 strain. One of the recombinant viruses thus constructed was fully viable and showed antigenicity and immunogenicity identical to those of type 3 poliovirus. The monkey neurovirulence tests and in vitro phenotypic marker tests (temperature sensitivity of growth, sodium bicarbonate concentration dependency of growth under agar overlay, and size of plaque) were performed on the recombinant virus. The stability of the virus in regard to the temperature sensitivity phenotype was also tested. The results suggested that the recombinant virus is a possible candidate for a new type 3 poliovirus vaccine strain.  相似文献   

17.
This study compares the presence of environmental poliovirus in two Argentinean populations using oral poliovirus vaccine (OPV) or inactivated poliovirus vaccine (IPV). From January 2003 to December 2005, Córdoba City used IPV in routine infant immunizations, with the exception of intermittent OPV use in August 2005. Between May 2005 and April 2006, we collected weekly wastewater samples in Córdoba City and the province''s three major towns, which continued OPV use at all times. Wastewater samples were processed and analyzed for the presence of poliovirus according to WHO guidelines. During the months of IPV use in Córdoba City, the overall proportion of poliovirus-positive samples was 19%. During an intermittent switch from IPV to OPV, this proportion increased to 100% within 2 months. During the 3 months when IPV was reintroduced to replace OPV, a substantial proportion of samples (25%) remained positive for poliovirus. In the OPV-using sites, on average, 54% of samples were poliovirus positive. Seventy-seven percent of poliovirus isolates showed at least one mutation in the VP1-encoding sequence; the maximum genetic divergence from the Sabin strain was 0.7%. Several isolates showed mutations on attenuation markers in the VP1-encoding sequence. The frequency or type of virus mutation did not differ between periods of IPV and OPV use or by virus serotypes. This study indicates that the sustained transmission of OPV viruses was limited during IPV use in a middle-income country with a temperate climate. The continued importation of poliovirus and genetic instability of vaccine strains even in the absence of sustained circulation suggest that high poliovirus vaccine coverage has to be maintained for all countries until the risk of reintroduction of either wild or vaccine-derived poliovirus is close to zero worldwide.In the context of the near achievement of poliomyelitis eradication and anticipated cessation of oral poliovirus (PV) vaccine (OPV), the World Health Organization (WHO) has recommended the use of inactivated PV vaccine (IPV) in countries that have IPV production facilities or other countries where immunization programs fulfill certain financial and logistic criteria (37). IPV has been shown to be safe and immunogenic in children in both developed and developing countries.(34) IPV diminishes the excretion of PV by children challenged with the Sabin strain of PV only moderately. The questions of whether and to which extent Sabin PV that is reintroduced into a population immunized with IPV could establish circulation, mutate to vaccine-derived PV (VDPV), and consequently cause poliomyelitis remain important. No such emergence of VDPV in developed countries using IPV has been reported. However, suboptimal hygienic conditions and insufficient vaccine coverage in middle- or low-income countries could favor the establishment of PV circulation after reintroduction, as indicated by recent VDPV outbreaks in populations with low OPV coverage (27, 38).Argentina currently uses OPV in the childhood immunization program according to recommendations from the Pan-American Health Organization. The last case of poliomyelitis due to wild-type PV was reported in Argentina in 1984 and in Córdoba Province in 1971 (24). In Córdoba City, the capital of Córdoba Province, standalone IPV (Imovax Polio; Sanofi Pasteur) replaced OPV (Polioral; Novartis Vaccines) in the routine childhood immunization program (2, 4, and 6 months of age plus a booster at 18 months age) from 1 January 2003 to 31 December 2005, while the surrounding provinces continued to use OPV. Due to an IPV shortage between 10 August and 7 September 2005, OPV was used in the capital during this period. We conducted environmental PV surveillance in Córdoba Province from May 2005 to April 2006 to describe environmental PV circulation and molecular characteristics of PV depending on the vaccine used. In the present evaluation, we also describe the dynamic of PV circulation around the change of IPV-OPV-IPV-OPV in the capital. This observation can contribute evidence regarding the dynamics of PV circulation and its implication for global immunization policy after polio eradication.  相似文献   

18.
Sabin strains used in the manufacture of oral polio vaccine (OPV) replicate in the human organism and can give rise to vaccine-derived polioviruses. The increased neurovirulence of vaccine derivatives has been known since the beginning of OPV use, but their ability to establish circulation in communities has been recognized only recently during the latest stages of the polio eradication campaign. This important observation called for studies of their emergence and evolution as well as extensive surveillance to determine the scope of this phenomenon. Here, we present the results of a study of vaccine-derived isolates from an immunocompromised poliomyelitis patient, the contacts, and the local sewage. All isolates were identified as closely related and slightly evolved vaccine derivatives with a recombinant type 2/type 1 genome. The strains also shared several amino acid substitutions including a mutation in the VP1 protein that was previously shown to be associated with the loss of attenuation. Another mutation in the VP3 protein resulted in altered immunological properties of the isolates, possibly facilitating virus spread in immunized populations. The patterns and rates of the accumulation of synonymous mutations in isolates collected from the patient over the extended period of excretion suggest either a substantially nonuniform rate of mutagenesis throughout the genome, or, more likely, the strains may have been intratypic recombinants between coevolving derivatives with different degrees of divergence from the vaccine parent. This study provides insight into the early stages of the establishment of circulation by runaway vaccine strains.  相似文献   

19.
From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (<82% nucleotide sequence identity) to the wild type 2 polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5' untranslated region (5' UTR) and noncapsid- 3' UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide.  相似文献   

20.
Abstract. There are many reasons for the modern interest in viral vaccines, but there is no doubt that the key role played by viral vaccines in public health is the major factor since other prophylactic or therapeutic anti-vital products simply do not exist. Viral vaccines have a long history that has been marked by successful events and by tragic accidents. Live viral vaccines are an extraordinary category of biologicals since, despite their reputed efficacy, they were developed by empirical experiments and patient epidemiological observation. From this point of view oral polio vaccine should be considered a 'miracle' since it became a major tool for public health in the 20th century, before we were able to understand the molecular basis of polio virus neurovirulence attenuation. The first evidence that polio virus can be attenuated was provided in the early 1940s by Max Theiler, but it was Hilary Koprowsky who demonstrated further in 1952, that a rodent adapted strain was safe and able to immunise a limited number of volunteers. Koprowsky studies were confirmed later during a mass field trial in Africa. However it is undeniable that the patient and systematic work of Albert B. Sabin was primordial in developing live oral attenuated poliovaccine. The excellence of Sabin's testing of poliovirus neurovirulence in the accurate studies that he developed, enabled him to select, after the cloning of viral populations by plaque assay, the best attenuated variants. It is interesting to remember that the real selective factor that allowed the isolation of attenuated variants was ignored by Sabin and was put forward by Lwoff in the Pasteur Institute, when he described the role of temperature in the selection of cold attenuated mutants. Historically, the first to perform a successful mass vaccination with Sabin oral live poliovaccine were Russian scientists. Oral live poliovaccine was in some cases the origin of paralytic accidents and Sabin strains were involved occasionally in such events. Other attenuated poliovirus strains used in clinical trials as oral vaccine, such as Cox-Lederle type 1 and Usol-D bac type 3, generated in some instances clusters of vaccinees that developed paralysis. An important achievement in the consistency of the Sabin vaccine was the transfer by Albert Sabin to the WHO of the seed material and the responsibility for surveying the quality control and licensing procedure of oral poliovaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号