首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The conventional view of root-cap mucilage as an expanded blob of mucilage is characteristic only of root tips in contact with free water. In soil, the mucilage is almost always a dry coating over the tip to which soil particles adhere. The kinetics of expansion of root-cap mucilage of Zea mays roots grown in field soil, in soil in pots, and axenically on agar, were determined when the mucilage was exposed to water. On the soil-grown roots the increase in mucilage volume was linear with time, sometimes reaching a constant volume during the 6 h of measurement, but sometimes not. This linear expansion is interpreted as limited by the rate at which the condensed mucilage in the periplasmic and intercellular spaces of the root cap passes to the exterior of the cap, expanding as fast as it arrives outside in the water. The height of the plateau is interpreted as a measure of the amount of mucilage initially present in the interior spaces. Because of the greater availability of water in the axenic roots grown on 1% agar, the mucilage was already outside the root cap, and it expanded more rapidly. It reached a final volume about 10-fold greater than that on the soil-grown roots. The volume increase was curvilinear with time. An analysis of these curves suggested that this swelling on axenic roots was a diffusion of mucilage outwards from the flanks of the root cap, and the diffusivity of the mucilage was estimated as 4 × 10?8 cm2 s?1. The molecular radius derived from this diffusivity was 34 nm, and the estimated molecular weight was 1.6 × 108 Da.  相似文献   

2.
Expansion of root-cap mucilage during hydration was followed by cryo-scanning analytical microscopy of soil-grown roots of diploperennis and Zea mays. Roots examined directly from the soil have no expanded mucilage. Their condensed, unexpanded mucilage is in three domains, periplasmic, intercellular and peripheral to the cap tissue. Carbon concentration is the same in the three domains. During hydration there is no change in carbon concentration as the condensed mucilage moves through these three domains; however there is a sharp drop at the periphery where a gel phase transition occurs. The rate of expansion of the mucilage blob around the root tip is limited by the rate of this gel phase transition.  相似文献   

3.
Some water-related physical properties of maize root-cap mucilage   总被引:7,自引:2,他引:7  
Abstract The dry weight (0.1%) and water potential -7 kPa) of root-cap mucilage from 3-d-old axenically grown maize seedlings have been determined. The results suggest strong gelling properties and weak water-holding capacity for the mucilage. Root tips from seedlings grown under low or high water stress were fixed by freeze-substitution. Micrographs showed that in both conditions, mucilage was secreted into the periplasmic space and extruded through the cell wall, though in dry conditions, the mucilage was tightly pressed against the root-cap surface. Histochemical and structural evidence is presented indicating chemical changes in the composition of the mucilage upon extrusion and a sharp increase in its hydration at increasing distance from the secretory cells. The possible functions of the root-cap mucilage in the rhizosphere are examined in light of these findings.  相似文献   

4.
Under water stress conditions, induced by mannitol solutions (0 to 0.66 M ) applied to the apical 12 mm of intact roots of Zea mays L. (cv. LG 11), a growth inhibition, a decrease in the osmotic potential of the cell sap and a significant accumulation of abscisic acid (ABA) were observed. When the roots were placed in a humid atmosphere after the stress, the growth rate increased again, even if elongation had been totally inhibited. Under a stress corresponding to an osmotic potential of -1.09 MPa in the solution, growth was totally inhibited, which means that the root cell turgor pressure was reduced to the yield threshold. These conditions led to the largest accumulation of ABA. The effect of water stress on the level of ABA was studied for three parts of the root. The greatest increase in ABA (about 10 fold) was obtained in the growth zone and this increase was apparently independent of the hydrolysis of the conjugated form. With a mannitol treatment of 1 h equivalent to a stress level of -1.39 MPa, a 4-fold increase in ABA efflux into the medium was obtained. These results suggest that there are interactions between water stress, root growth, osmotic potential and the ABA level. The growth under conditions of stress and the role of endogenous ABA in the control of plant metabolism, specially in the growth zone, are discussed.  相似文献   

5.
M. Iijima  Y. Sako  T. P. Rao 《Plant and Soil》2003,255(1):399-407
Direct evidence on the functions of root-cap mucilage during plant root growth in soil is limited mainly due to the lack of a method for in situ measurements. In this paper, we offer a method that facilitates the measurement of mucilage exudation when roots are growing in soil. We observed the mucilage exudation directly through a transparent panel located on the side of a root box in which plant roots were growing. We used a CCD camera attached to a microscope to observe and record mucilage exudation. Using image analysis, the activity of mucilage exudation was evaluated based on the area occupied by the mucilage on the root tip. The area of mucilage observed on the root tips after 1-h growth in soil corresponded with the weight of mucilage that was originally observed on the tips before they were transplanted. This relationship suggests that the observed area on root tip relates to total exudation. The area of mucilage exudation on the root tips was high (0.48 mm2) at night and low (0.35 mm2) at midday, suggesting that the activity of mucilage exudation follows diurnal changes. Furthermore, the mucilage exudation positively correlated with the root elongation rate, implying that fast-growing roots exude more mucilage.  相似文献   

6.
Physical properties of axenic maize root mucilage   总被引:2,自引:0,他引:2  
Read  D.B.  Gregory  P.J.  Bell  A.E. 《Plant and Soil》1999,211(1):87-91
Root mucilage was collected from 3–4 day-old axenically-grown maize seedlings (Zea mays L. cv. Freya). The water potential of the hydrated mucilage was measured by thermocouple psychrometry and the rheology at low deformation rates was studied using an oscillating cone and plate rheometer which provides information on both the elastic and viscous components of its behaviour. Water potential decreased as mucilage solute concentration increased, reaching a value of −60kPa at 1.2 mg mL−1. At the lowest oscillation rate, the mucilage had a dynamic viscosity of 145 mPa s and behaved as a weak viscoelastic gel. After filtration to remove suspended root cap cells and other solid plant material, mucilage viscosity was reduced to 5–10 mPa s at low oscillation rates and the behaviour was that of a viscous liquid. The decrease in viscosity which occurs on filtration indicates that the root cap cells form an integral part of the gel system, either by interacting directly with each other or via the polysaccharide. Our observations provide further support for the idea that mucilage plays a major role in maintaining root-soil contact in the rhizosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Water availability and movement in soil are critical determinants of resource availability to, and interactions among, members of the soil community. However, it has been impossible to observe gradients in soil water potential empirically at millimetre spatial scales. Here we describe progress towards that goal using output from two microbial biosensors, Pantoea agglomerans BRT98/pPProGreen and Pseudomonas putida KT2442/pPProGreen, engineered with a reporter system based on the osmotically sensitive proU promoter from Escherichia coli. The proU‐GFP construct in both microbiosensors produced green fluorescent protein (GFP) as a function total water potential in nonsterile soil. Controlled experiments in liquid culture showed that dramatically different microbiosensor growth rates (resulting from exposure to different salts as osmolytes) did not alter the GFP output as a function of water potential in either sensor, but P. agglomerans' GFP levels at a given water potential were strongly influenced by the type of carbon (energy) source available to the microbes. In non‐sterile rhizosphere soil along Zea mays L. roots, though GFP expression was quite variable, microbiosensors reported statistically significantly more negative soil water potentials as a function of axial distance from root tips, reflecting the gradient in soil water potential hypothesized to develop during transpiration.  相似文献   

8.
We quantified the structural changes accompanying cellular differentiation in root caps of Zea mays cv. Ageotropic to determine the developmental basis for the nongraviresponsiveness of their primary roots. Cells of the calyptrogen and columella of primary roots of the ageotropic mutant have structures indistinguishable from those of caps of primary roots of Z. mays cv. Kys the graviresponsive, wild-type parent of Z. mays cv. Ageotropic. However, the relative volumes of dictyosomes, dictyosome-derived vesicles and starch in the outermost peripheral cells of wild-type roots were significantly lower than were those in peripheral cells of mutant roots. This corresponds to a dramatic accumulation of starch and mucilage-filled vesicles in peripheral cells of mutant roots. Cellular differentiation in root caps of graviresponsive seminal roots of the Ageotropic mutant resembled that of primary and seminal roots of the wild-type cultivar, and differed significantly from that of primary roots of the mutant. We conclude that the mutation that blocks secretion of mucilage from peripheral cells of Ageotropic roots: (1) expresses itself late in cellular differentiation in root caps; (2) is expressed only in primary (but not seminal) roots of the Ageotropic mutant; and (3) is consistent with malfunctioning dictyosomes and dictyosome-derived vesicles being the cellular basis for agravitropism of primary roots of this mutant.  相似文献   

9.
Diurnal rates of leaf elongation vary in maize (Zea mays L.) and are characterized by a decline each afternoon. The cause of the afternoon decline was investigated. When the atmospheric environment was held constant in a controlled environment, and water and nutrients were adequately supplied to the soil or the roots in solution, the decline persisted and indicated that the cause was internal. Inside the plants, xylem fluxes of water and solutes were essentially constant during the day. However, the forces moving these components changed. Tensions rose in the xylem, and gradients of growth-induced water potentials decreased in the surrounding growing tissues of the leaf. These potentials, measured with isopiestic thermocouple psychrometry, changed because the roots became less conductive to water as the day progressed. The increased tensions were reversed by applying pressure to the soil/root system, which rehydrated the leaf. Afternoon elongation immediately recovered to rapid morning rates. The rapid morning rates did not respond to soil/root pressurization. It was concluded that increased xylem tension in the afternoon diminished the gradients in growth-induced water potential and thus inhibited elongation. Because increased tensions cause a similar but larger inhibition of elongation if maize dehydrates, these hydraulics are crucial for shaping the growth-induced water potential and thus the rates of leaf elongation in maize over the entire spectrum of water availability.  相似文献   

10.
Polyamine oxidase (PAO, EC 1.5.3.3) activity and polyamine content in the cell wall and soluble fractions obtained from embryos, endosperms and shoots and roots of etiolated or green seedlings of maize ( Zea mays L. cv. WF9) during the first 7 days of germination were investigated. Polyamine content was also determined in the trichloroacetic acid-soluble (free polyamines) and trichloroacetic acid insoluble (bound polyamines) fraction obtained from the same tissues. PAO activity, determined by the radiometric method based on the recovery of the labelled reaction product 1-pyrroline, was mostly localized in the cell wall fraction. The activity was very low in embryos and endosperms and present in traces in roots. In etiolated shoots PAO activity increased sharply, while in green shoots it was low and increased slowly. No polyamines were found in the cell wall fraction and only putrescine was detected in the soluble fraction, with the exception of the embryo, where spermidine and spermine were also present. In the TCA-soluble fraction of embryos, putrescine increased during imbibition, while spermidine and spermine decreased; in the endosperm no relevant changes in polyamines occurred. In the same fraction of green and etiolated seedlings, putrescine increased, giving a peak at days 3–5, while spermidine decreased to very low levels. The amount of bound polyamines was 1–4% of the free ones. The pattern of PAO activity seems to be unrelated to endogenous free polyamine content, which is the same in shoots and roots of etiolated and green seedlings. Enzyme activity, very low in ungerminated seeds, increased continuously during the progression of germination, especially in etiolated shoots, indicating a possible involvement in cell wall formation.  相似文献   

11.
12.
Abstract Two populations of living detached cap cells are found within the drop of mucilage at the root tip of a 3-d-old corn seedling. Axial cells, which pass through the length of the columella, are shed at the apex of the cap and lateral cells, which have spent less time or no time within the columella, are detached from the cap flanks. The two types of cells differ in shape, size and internal structure. Whereas the axial cells are more or less spherical and have a projected surface area of 1300μm2, the lateral cells are elongated and possess a projected surface area of 2000μm2. The axial cells are further distinguished by the association with a polyhedric net thought to be remnants of undigested middle lamellar material from the columellar tissue. Both populations of cells arc metabolically active and can be plasmolysed, but no evidence was found that they secrete mucilage after detachment. The lateral cells have been cultured on solid nutrient media and on nutrient-free agar. In both cases, they did not divide; however, they enlarged by one-third in their projected surface area over 15 d.  相似文献   

13.
The growth and emergence of maize silks has a considerable importance in yield determination under drought conditions. Spatial and temporal patterns of the rates of tissue expansion and of cell division were characterized in silks of plants subjected to different soil water potentials. In all cases, silk development consisted of four phases: (1) cell division and tissue expansion occurred together uniformly all along the silk; (2) cell division progressively ceased from tip to base, while expansion remained spatially uniform including during the phase (3) after the cessation of cell division; and (4) as the silk emerged from the husks, expansion ceased in the emerged portion, probably because of direct evaporative demand, while the relative growth rate progressively decreased in the enclosed part. The rates of tissue expansion and cell division were reduced with water deficit, resulting in delayed silk emergence. The duration of cell division was not affected, and in all cases, the end of cell division in the silk coincided with anther dehiscence. The duration of phase 3, between the end of cell division and the arrest of cell growth in silk apex, considerably increased with water deficit. It corresponded to the anthesis-silking interval used by breeders to characterize the response of cultivars to stress.  相似文献   

14.
Maize ( Zea mays L. cv . Pioneer 3925) endosperm development is sensitive to water deficit during rapid cell division and nuclear DNA endoreduplication. To gain insight into effects of water deficit on gene-products that are involved in these processes, we examined the accumulation of β-tubulin, a 50-kDa subunit of microtubules. Proteins extracted from endosperms were separated by SDS-PAGE and immunoblotted with antibodies to β-tubulin. In addition to the expected 50-kDa β-tubulin protein, monoclonal antibodies recognized a 35-kDa protein that predominated at early stages of development and progressively disappeared coincident with the appearance of 50-kDa β-tubulin. Various tests demonstrated that the cross-reacting 35-kDa protein was not a post-harvest artifact, but represented a group of in situ tubulin isotypes preferentially detected by the monoclonal antibodies we used. The pattern of appearance of the fragment suggested that differential expression or degradation of tubulin isotypes normally occurs during development. This expression pattern is prologed or altered during water deficit, which may affect cell division.  相似文献   

15.
The epidermal surface of the maize root tip   总被引:2,自引:2,他引:0  
  相似文献   

16.
The growth rate of maize ( Zea mays L. cv. Cross Bantam T51) coleoptiles in the dark was highest at the basal zone and decreased towards the tip. Growth was strongly inhibited by white fluorescent light (5 W m−2), especially in the basal zone of coleoptiles. Light irradiation caused an increase in the values of stress-relaxation parameters, the minimum stress-relaxation time and the relaxation rate and a decrease in the extensibility (strain/stress) of the cell walls at all zones. In addition, during growth, the accumulation of osmotic solutes was strongly inhibited by white light irradiation, resulting in an increased osmotic potential. The influences of white light on the mechanical properties of the cell wall and the osmotic potential of the tissue sap were most prominent in the basal zone. Significant correlations were observed between the increment of coleoptile length and the mechanical properties of the cell walls or the osmotic potential of the tissue sap and osmotic solutes content. Furthermore, light inhibited the outward bending of split coleoptile segments. These facts suggest that white light inhibits elongation of maize coleoptiles by modifying both the mechanical properties of the cell walls and cellular osmotic potential, which control the rate of water uptake.  相似文献   

17.
How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA ( S ABA) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. S ABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. S ABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of S ABA to changes in root water potential ( Ψ root) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of S ABA to RWC were due to different RWC values among categories at a given Ψ root, and not to differences in the response of S ABA to Ψ root.  相似文献   

18.
根据玉米生育期的田间试验资料分析了土壤-植物-大气连续体中水势和水流阻力的分布,结果表明土壤与植物叶片之间的水势差在玉米抽雄期前达0.8—1.0MPa,到抽雄期以后达1.0—1.5MPa,叶片与大气之间的水势差则在抽雄期前后分别达80—120MPa和60—80MPa;连续体内的水流阻力主要在叶片与大气之间。建立了连续体中玉米叶片水势的动态模拟公式,模拟叶水势具有较高的精度。最后,揭示了叶片蒸腾速率与叶-气系统水势差和水流阻力的关系,当叶片与大气之间的水势差达90—100MPa之后,蒸腾速率随叶-气间水势差增加而减小。  相似文献   

19.
The roots of a mature, field-grown maize plant are dimorphic: the primary root and those from the oldest nodes are bare with a heavily lignified cortex arid sloughed epidermis; those from younger nodes, except for a bare elongation zone, have an intact epidermis surrounded by a persistent soil sheath. Sheathed roots consistently have more layers of cortical cells, but the ratio of volumes of cortex to stele (ca 4) and the cross-sectional area of phloem (ca3× 10−2 mm2) are similar in each type. Assimilated carbon (from 14 C applied to a small area of one leaf) was translocated to all roots and actively metabolized in cortex and stele of both types. After 1 to 2 days the proportion of 14C exuded from a given length of mature root into its soil sheath, or into the adjacent unattached soil in the case of bare roots, was the same (5%) in both root types when compared with the ethanol-soluble 14C in the tissues of this length. Up to 75% of the ethanol-soluble label in the roots was in a cationic fraction (amino acids and unidentified compounds), ca 1% was in an anionic fraction and the remainder was in a neutral fraction (sugars). Approximately equal amounts of soluble 14C were found in the stele, cortex and laterals.  相似文献   

20.
The long delayed maturation of the late metaxylem of maize ( Zea mays ) roots imposes a high-resistance barrier between the immature apices and the negative water potential of the leaves. These apices (20+ cm) bear strongly adhering soil sheaths to within 0.5 to 2 cm of the distal end. It was hypothesized that the sheathed immature apices should show less response to transpiration stress than bare regions. Measurements were made of the relative water content (RWC) of the sheathed and bare zones of the axile roots, both at different ages of the plant, and early and late in the day's transpiration. Sheathed roots maintained a steady RWC of about 83% irrespective of age or transpiration. Bare roots had RWCs of about 63% in the morning, but this fell to 55% in the afternoon. The first-order branches on the bare roots in the morning had still lower values of RWC, near 50%. Plots of RWC against water potential were indistinguishable for the three root types. It is concluded that the immature apices are indeed relatively isolated from the fluctuating tensions in the stem xylem, and that these tensions reduce the water content of bare roots and their branches to low values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号