首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Under conditions where optimal concentrations of arachidonic acid, phosphatidic acid, or the calcium ionophore A23187 caused release of 50-95% of calcium from preloaded platelet microsomes, basophil platelet activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, AGEPC) did not cause the release of calcium at concentrations as high as 2 X 10(-5) M. The failure to stimulate calcium release was not due to metabolism or inactivation of AGEPC. These results show that AGEPC is not a calcium ionophore and is unable to directly effect the release of calcium from microsomes by mechanisms other than ionophoric action. The increase in intracellular levels that occurs during AGEPC-induced platelet aggregation must be an indirect effect of the AGEPC.  相似文献   

2.
The presence of 1-acyl-2-acetyl-sn-glyceryl-3-phosphorylcholine in a sample of platelet-activating factor from stimulated rabbit neutrophils was demonstrated by a gas-liquid chromatography/mass spectrometry technique coupled with selected ion monitoring. The ions chosen for identification were those of acetyl and long-chain acyl moieties and molecular weight. Species containing palmitic, oleic and stearic acids were detected. A good correlation was observed between the productions of 1-acyl-2-acetyl-sn-glyceryl-3-phosphorylcholine and 1-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine by neutrophils stimulated with ionophore A23187.  相似文献   

3.
《FEBS letters》1986,208(1):52-55
The protozoan Tetrahymena pyriformis contains 4.2 ± 2.2 ng PAF/107 cells. Only 1–3% of this lipid is released in the cell free medium. PAF production is not influenced by different extracellular Ca2+ concentrations. Cell stimulation with calcium ionophore A23187 or zymosan particles does not affect the amount of PAF either. This is the first report of a natural occurrence of PAF in a protozoan.  相似文献   

4.
The metabolism of [3H]PAF-acether ([1',2'-3H]alkyl-2-acetyl-sn-glycero-3-phosphorylcholine ([3H]alkylacetyl-GPC)) by rabbit platelets was investigated using thin-layer chromatography and high-performance liquid chromatography followed by radioactivity detection. After 2 h of incubation at 37 degrees C, 90 +/- 5.3% of [3H]PAF-acether taken up by the platelets were converted into a product identified as sn-2 long-chain acyl analogue ([3H]alkylacyl-GPC) which was incorporated in the membranes. This conversion was independent from extracellular calcium and was completely inhibited by platelet pre-exposure to 2 mM phenylmethylsulfonyl fluoride, a serine hydrolase inhibitor, which failed to inhibit the uptake of [3H]PAF-acether by the cells. The 2-deacetylated derivative, lyso-[3H]PAF-acether was found to be an intermediate of the conversion of [3H]PAF-acether into [3H]alkylacyl-GPC in platelet homogenates. Platelet stimulation with 2.5 U/ml of thrombin induced a reduction (16.5 +/- 2.2%) of its content of [3H]alkylacyl-GPC, accompanied by the release of [3H]PAF-acether and lyso-[3H]PAF-acether to the medium. These effects were suppressed by the phospholipase A2 inhibitor, p-bromophenacyl bromide. Our results demonstrate that intact platelets convert exogenous PAF-acether into alkylacyl-GPC, which can serve as the precursor of PAF-acether released during stimulation. The existence of a metabolic cycle for the uptake, the release and the inactivation of PAF-acether by platelets is suggested.  相似文献   

5.
6.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

7.
1-O-Hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC), structurally identical with platelet activating factor, is a potent stimulus for rabbit platelet aggregation and serotonin secretion. AGEPC at concentrations between 10−10 and 10−8 M induced stimulation of rabbit platelet synthesis of thromboxane B2. The dose vs. response curve for platelet thromboxane B2 synthesis was displaced slightly towards higher stimulus concentrations compared to [3H]serotonin secretion, with half-maximal concentrations of 2.5 · 10−9 and 8 · 10t-10 M, respectively. Rates of thromboxane B2 synthesis and secretion were similar with a t12max of 4.0–4.5 s for both processes. AGEPC induced a decrease in platelet [14C]arachidonic acid in both phosphatidylinositol and phosphatidylcholine, although [14C]arachidonic acid turnover in phosphatidylcholine was not observed below 1 · 10−8 M AGEPC. Concomitantly, this decrease in phospholipid [14C]arachidonic acid was associated with a marked increase of radiolabel in platelet diacylglycerol and phosphatidic acid 15s after AGEPC addition, suggesting the possibility of a phospholipase C-diacylglycerol lipase mechanism of fatty acid cleavage. As observed previously with secretion and aggregation, removal of the 2-acetyl group from AGEPC abrogated all capacity of this molecule to stimulate platelet phospholipase. This study indicates that AGEPC (or platelet activating factor) activation of rabbit platelet phospholipase occurs in a time-course and concentration range similar to that required for [3H] serotonin secretion.  相似文献   

8.
The synthesis of 1-O-alkyl-2-(R)-hydroxypropane-3-phosphonocholine is described. An efficient alkylation procedure using (NaH/DMSO) catalysis is also described and applied to the synthetic scheme. The key intermediate 1-O-alkyl-2-(R)-O-benzyl-3-bromopropane was phosphonylated using tris(methylsilyl)phosphite; the resulting phosphonic acid was coupled to choline using trichloroacetonitrile/pyridine or triisopropylbenzenesulfonyl chloride/pyridine followed by catalytic hydrogenation to yield 1-O-alkyl-2(R)-hydroxypropane-3-phosphonocholine.  相似文献   

9.
Combining normal-phase HPLC separation and tandem mass spectrometric detection, using an ion-spray HPLC-MS interface, a quantitative method for acyl-platelet activating factor (acyl-PAF), platelet-activating factor (PAF) and related phospholipids was developed. Mass spectra, positive ions, showed intense [M+H]+ ions; collision-induced dissociation of protonated molecular ions gave characteristic daughter ions corresponding to the polar head. Detection limits of 0.1–0.3 ng injected were obtained by multiple reaction monitoring. Samples of human endothelial cells treated with compounds modulating the levels of acyl-PAF and PAF have been analyzed by the present technique, proving that this approach is suitable for biochemical studies.  相似文献   

10.
In platelets, and in several other cell systems, pre-treatment with protein kinase C activators such as phorbol 12-myristate 13-acetate (PMA) results in the inhibition of receptor-mediated responses, suggesting that protein kinase C may play an important role in the termination of signal transduction. In the present study, we have attempted to locate the site of action of phorbol ester by comparing thrombin-induced (i.e. receptor-mediated) platelet activation with that induced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and NaF, two agents which by-pass the receptor and initiate platelet responses by directly modulating G-protein function. After a 10 s pre-treatment with PMA (16 nM), dense-granule secretion induced by thrombin (0.2 unit/ml), GTP[S] (40 microM) and NaF (30 mM) was potentiated, resulting in a greater than additive response to agent plus PMA. However, after a 5 min pre-treatment, thrombin-induced secretion alone was inhibited, whereas PMA plus GTP[S]/NaF-induced release remained greater than additive. [32P]Phosphatidate formation in response to all three agents, in contrast, was inhibited by 50-70% in PMA (5 min)-treated platelets. That secretion induced by these agents is a protein kinase C-dependent event was demonstrable by using staurosporine, a protein kinase C inhibitor which at concentrations of 1-10 nM inhibited (70-90%) PMA-induced as well as thrombin- and NaF-induced secretion and protein phosphorylation. In membranes from PMA-treated platelets, thrombin-stimulated GTPase activity was significantly enhanced compared with that in untreated membranes (59% versus 82% increase over basal activity). The results suggest that inhibition of receptor-mediated responses by PMA may be directed towards two sites relating to G-protein activation: (i) receptor-stimulated GTPase activity and (ii) G-protein-phospholipase C coupling. Furthermore, the lack of inhibition of NaF- and GTP[S]-induced secretion by PMA suggests that different mechanisms may be involved in thrombin-induced and G-protein-activator-induced secretion.  相似文献   

11.
12.
13.
14.
We obtained rabbit antibodies by injecting immunogenic conjugates which were prepared by combining covalently 1-O-(15'-carboxypentadecyl)-2-O-acetyl-sn-glycero-3- phosphocholine(acetyl-CPGPC), 1-O-(15'-carboxypentadecyl)-2-O-N,N-dimethylcarbamoyl-sn-glycero-3 - phosphocholine (dimethylcarbamoyl-CPGPC), or 1-O-(15'-carboxypentadecyl)-2-O-N-butyl-carbamoyl-sn-glycero-3-pho sphocholine (butylcarbamoyl-CPGPC) with protein (BSA or KLH), respectively, and examined the specificity of the resulting antibodies by comparison with inhibition of the binding of iodolabeled CPGPC derivatives to the antibodies by corresponding or related phospholipids. Acetyl-CPGPC and dimethylcarbamoyl-CPGPC possessed haptenic activity causing production of antibodies reactive with PAF. Changes of the substituents at sn-2 in the antigens affected the specificity of the resulting antibodies. The affinity of the substituents to the antibodies decreased in the following order: acetyl much greater than dimethylcarbamoyl and butylcarbamoyl for antibodies to acetyl-CPGPC-KLH; dimethylcarbamoyl greater than acetyl much greater than butylcarbamoyl for antibodies to dimethylcarbamoyl-CPGPC-BSA; and butylcarbamoyl greater than dimethylcarbamoyl greater than acetyl for antibodies to butylcarbamoyl-CPGPC-BSA. Naturally occurring phospholipids, including lysoPAF, phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin, revealed no cross-reactivities with these antibodies. Anti-dimethylcarbamoyl-CPGPC-BSA IgG and anti-acetyl-CPGPC-KLH IgG inhibited a PAF-induced aggregation of washed rabbit platelets in a dose-dependent manner. In contrast, anti-butylcarbamoyl-CPGPC-BSA IgG did not affect a PAF-induced platelet aggregation, nor did preimmune IgG.  相似文献   

15.
The present study demonstrates that inactivation of exogenous 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkylacetyl-GPC; platelet-activating factor) by human platelets is mediated by the sequential action of two enzymes, 1) a Ca2+-independent acetylhydrolase recovered in the cytosolic fraction of platelets that deacylates alkylacetyl-GPC forming alkyllyso-GPC and 2) a CoA-independent, N-ethylmaleimide-sensitive transacylase associated with platelet membranes that incorporates a long-chain fatty acid into alkyllyso-GPC to produce alkylacyl-GPC. Separation of platelet phospholipids and subsequent resolution into individual molecular species by high-performance liquid chromatography revealed that the newly formed alkylacyl-GPC was exclusively alkylarachidonoyl-GPC and that the arachidonoyl group for acylation of alkyllyso-GPC was provided by phosphatidylcholine. We conclude that the previously described platelet arachidonoyl transacylase (Kramer, R.M., and Deykin, D. (1983) J. Biol. Chem. 258, 13806-13811) may play an important role in the metabolism of platelet-activating factor.  相似文献   

16.
1-O-Alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (AAGPC) triggered the release of [3H]arachidonate but not [14C]stearate from cellular phospholipids in cytochalasin B-treated rabbit polymorphonuclear leukocytes. Concentrations of AAGPC up to 20 nM caused a dose-dependent release and subsequent metabolism of the released [3H]arachidonic acid. Most of the release of the [3H]arachidonate had taken place within the first 2 min of stimulation. Phosphatidylinositol and phosphatidylcholine served as the sources of [3H]arachidonate with about 50% of the label coming from each pool. Challenge of cytochalasin B-treated polymorphonuclear leukocytes with AAPGC led to the production of [3H]hydroxyeicosatetraenoic acids and [3H]dihydroxyeicosatetraenoic acids. No significant production of [3H]prostaglandins or [3H]thromboxanes was detected. AAGPC also caused a dose-dependent degranulation of cytochalasin B-treated rabbit polymorphonuclear leukocytes as shown by the release of beta-glucuronidase and lysozyme. Both the AAGPC-stimulated production of arachidonate metabolites and the degranulation response were blocked by eicosatetraynoic acid and non-dihydroguaiaretic acid at similar inhibitor concentrations. These findings suggest the bioactions of AAGPC on polymorphonuclear leukocytes may be mediated by the release of arachidonic acid and the production of mono- and dihydroxyeicosatetraenoic acids.  相似文献   

17.
The capacity of platelet-activating factor (PAF) and its 2-O-methyl analog (methoxy-PAF) to activate human monocytes, neutrophils and platelets were compared. Both PAF and methoxy-PAF increased monocyte cytotoxicity toward WEHI 164 cells with a maximal increase in cell killing at 100 pM to 1 nM. Methoxy-PAF was slightly, but significantly, more potent than PAF for increasing cytotoxicity. PAF and methoxy-PAF increased monocyte release of TNF two- to three-fold above control release with no difference in their potency. Methoxy-PAF increased cell-associated TNF maximally after 2 to 3 h of incubation and increased TNF release maximally after 5 to 18 h of incubation. PAF induced release of the neutrophil granule enzyme beta-glucuronidase with maximal net release of 15 to 20% at 100 nM PAF whereas methoxy-PAF did not induce release of beta-glucuronidase. Similarly, 10 nM PAF induced 30% platelet aggregation whereas methoxy-PAF induced aggregation only at 1000-fold higher concentrations. Analysis of PAF and methoxy-PAF metabolism by monocyte and serum acylhydrolases indicates that methoxy-PAF is substantially more resistant than PAF to degradation by these enzymes. These observations indicate that methoxy-PAF activates monocytes selectively and suggest that this phospholipid or a related compound could be used for in vivo immunotherapy.  相似文献   

18.
Four naturally occurring platelet-activating factor (PAF) analogs, 1-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphocholine, 1-hexade-canoyl-2-acetyl-sn-glycero-3-phosphocholine, 1-octadecanoyl-2-acetyl-sn-glycero-3-phosphocholine, and 1-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamine, stimulated human neutrophils (PMN) to mobilize Ca2+, degranulate, and produce Superoxide anion. They were, respectively, 5-, 300-, 500-, and 4000-fold weaker than PAF in each assay; inhibited PMN-binding of [3H]PAF at concentrations paralleling their biological potencies; and showed sensitivity to the inhibitory effects of PAF antagonists. PAF and the analogs, moreover, desensitized PMN responses to each other but not to leukotriene B4 and actually increased (or primed) PMN responses to N-formyl-MET-LEU-PHE. Finally, 5-hydroxyicosatetraenoate-enhanced PMN responses to PAF and the analogs without enhancing the actions of other stimuli. It stereospecifically raised each analog's potency by as much as 100-fold and converted a fifth natural analog, 1-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine from inactive to a weak stimulator of PMN. PAF and its analogs thus represent a structurally diverse family of cell-derived phospholipids which can activate, prime, and desensitize neutrophils by using a common, apparently PAF receptor-dependent mechanism.  相似文献   

19.
Washed, [3H]serotonin-labeled chicken thrombocytes aggregated and secreted [3H]serotonin when stimulated in vitro with platelet-activating factor (PAF), collagen and calcium ionophore A23187. The effective dose causing a 25% secretion of [3H]serotonin (ED25) from washed chicken thrombocytes was 10(-8) M for PAF, 5 X 10(-8) M for collagen and 3 X 10(-7) M for A23187. Chicken thrombocyte activation by PAF required Ca2+ and appeared to be mediated through a specific receptor for PAF.  相似文献   

20.
We have previously reported that platelet-activating factor (PAF) is present in human amniotic fluid obtained from women in labor. We have also demonstrated that PAF, lyso-PAF, and alkyl acyl-sn-glycero-3-phosphocholine (AA-GPC) are present in human amnion tissue. In the reported study, we have investigated the enzymes involved in PAF metabolism in amnion tissue and their regulation. A phospholipase A2 activity has been demonstrated in amnion tissue which cleaves alkyl acyl (long-chain) sn-glycero-3-phosphocholine. The enzyme activity is not altered by Ca2+ and is distinctly different from the phospholipase A2 that we have previously characterized in this tissue. Amnion tissue contains acetyltransferase activity which requires Ca2+ and is associated with the microsomal fraction. Acetylhydrolase is also present in the cytosolic fraction of amnion tissue. Acetylhydrolase activity has also been demonstrated in amniotic fluid. The affinities of acetyltransferase (for lyso-PAF) and acetylhydrolase (for PAF) were unaffected by Ca2+. In the presence of Ca2+, however, the specific activity of acetyltransferase was increased four- to fivefold while that of acetylhydrolase was unaffected. Acetyltransferase and acetylhydrolase activities in fetal membranes and decidua were similar and were unchanged with gestational age. The possible role of PAF in the initiation of human parturition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号