首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are interested in the effect of receptor clustering on k+, the diffusion-limited forward rate constant for the binding of a ligand to a cell surface receptor. Here we estimate the reduction in k+ when receptors are clustered in various configurations. We obtain two alternative expressions for the flux of ligands into receptors distributed on a surface. Next we show through a variational principle that these provide both upper and lower bounds on the flux when evaluated for trial concentration functions which satisfy only the boundary conditions of the Laplace equation. We use an analogy with electrostatics to calculate rigorous bounds within approx. 10% of the exact result for a variety of planar clusters of hemispherical receptor sites. We also obtain an exact result for the flux into a spheroidal receptor and use this result to obtain bounds on the flux into certain receptor clusters.  相似文献   

2.
Rat liver and brain alpha 1-adrenergic receptors were purified 500 fold by successive chromatographic steps using heparin- and wheat germ agglutinin-agarose; an affinity matrix constructed by coupling CP85.224 (a derivative of prazosin) to affigel 102. It is shown that the existence in brain of an alpha 1-adrenergic receptor subpopulation, which is structurally distinct from that previously characterized. Chlorethylclonidine, irreversibly inactivates [3H] prazosin binding sites in partially purified membrane preparations of rat liver. Under identical conditions, only 50% of receptors are irreversibly inactivated. Computer modelling of data obtained from the competition by the alpha-antagonists, WB 4101 and phentolamine, for [3H] prazosin binding to partially purified preparations of rat liver is best fit by assuming a single low-affinity site for both ligands. However, the partially purified brain preparations indicates the presence of two affinity binding sites for these antagonists. Prior alkylation of brain receptors with chlorethylclonydyne results in the loss of the low-affinity phentolamine and WB4101 binding sites. These data provide evidence for the existence of a single receptor subpopulation (alpha 1b) in rat liver and for two subpopulations (alpha 1a and alpha 1b) in rat brain. The significance of these results in understanding the signal mechanisms which allow cellular responsiveness to alpha 1-adrenergic receptor agonists is discussed.  相似文献   

3.
A theoretical model is developed for cell-to-cell binding by bivalent ligands that can bind to mobile receptors on the cell surfaces. Monovalent inhibitors that can bind either to receptors or ligands are also included. For symmetrical ligands, that is, ligands in which both binding sites are the same, it is shown that crosslinking of receptors on each cell will interfere with intercellular bridge formation. At equilibrium, such interference is not drastic, but if the crosslinks can form before the cells are brought into contact, crosslinking may greatly impede the rate of intercellular binding. Comparison is made with experiments, and the importance of receptor mobility is discussed. It is noted that ligands can also bind a cell to itself or to a surface.  相似文献   

4.
G I Bell 《Cell biophysics》1979,1(2):133-147
A theoretical model is developed for cell-to-cell binding by bivalent ligands that can bind to mobile receptors on the cell surfaces. Monovalent inhibitors that can bind either to receptors or ligands are also included. For symmetrical ligands, that is, ligands in which both binding sites are the same, it is shown that crosslinking of receptors on each cell will interfere with intercellular bridge formation. At equilibrium, such interference is not drastic, but if the crosslinks can form before the cells are brought into contact, crosslinking may greatly impede the rate of intercellular binding. Comparison is made with experiments, and the importance of receptor mobility is discussed. It is noted that ligands can also bind a cell to itself or to a surface.  相似文献   

5.
We established a methodology to analyze radioligand binding to the recombinant type la metabotropic glutamate receptor (mGluRla). A full-length cDNA encoding mGluR1a, which was isolated from a lambda gt 11 cDNA library of human cerebellar origin, was expressed in a baculovirus/Sf9 insect cell system. Membrane fractions with recombinant receptor expression were analyzed for the binding of [3H]L-quisqualic acid (L-QA), which is known to be a potent agonist of mGluRla. Efficient binding of the radioligand to the human receptor was observed in a saturable manner, giving an apparent Kd= 0.091 microM. [3H]L-QA bound to the human mGluR1a was displaced by known ligands such as L-QA, L-Glu, t-ACPD ((+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid) with IC50s = 0.056, 0.97 and 4.0 microM, respectively. MCPG (alpha-methyl-4-carboxyphenylglycine) displaced the radioligand binding with lower potency. Using this binding protocol, we then evaluated the ligand ability of synthetic dipeptides. Among peptides tested, only Glu-containing dipeptides inhibited the radioligand binding, e.g. IC50 of L-Met-L-Glu was 4.3 microM. When phosphatidyl inositol turnover was assayed in mGluR1a-expressing CHO cells, L-Met-L-Glu was partially agonistic. We further expanded this [3H]L-QA binding protocol to type 5a mGluR, another member of group I mGluRs, as well as to AMPA receptor, a member of ionotropic glutamate receptors, since L-QA is also known to be a potent ligand for these receptors. Data shown here will provide a novel system not only to search for ligands for the glutamate receptors, but also to biochemically analyze the interaction modes between glutamate receptors and their ligands.  相似文献   

6.
The lateral organization of receptors on cell surfaces is critically important to their function; many receptors transmit transmembrane signals when redistributed into clusters, while the response of others is potentiated by their aggregation. Cell-cell contact can play a crucial role in receptor aggregation, even when the bonds between receptors on one cell and ligands on the other are monovalent. Monte Carlo simulations on a two-membrane model were carried out to determine whether weak enthalpic interactions among receptors in one membrane, and among ligands in another, can work synergistically to give large-scale clustering when the two membranes are brought into contact. The simulations give support to such a clustering mechanism. In addition, because clustering is a cooperative process akin to a phase separation, individual receptors and ligands may undergo repeated binding and unbinding while in a clustered "phase," and a single ligand could interact with multiple different receptor partners. The results suggest a resolution of the dichotomy between serial triggering and aggregation models of T cell activation.  相似文献   

7.
Mammalian livers express endocytic cell surface receptors that specifically bind natural or synthetic molecules containing terminal galactosyl or N-acetylgalactosaminyl sugars. One of these hepatocyte receptors is the asialogly-coprotein receptor, which mediates the endocytosis and subsequent lysosomal degradation of these glyco-molecules. Although the receptor was discovered almost 30 years ago, the physiological reason why mammals have this receptor is still unknown. At the cellular level, the basic molecular function of the receptor is to mediate the uptake and ultimate degradation of galactosyl/N-acetylgalactosaminyl-containing molecules (ligands). At the organism level, however, the physiological function is uncertain. The identity of the natural ligands and the reasons for this elaborate receptor system to remove these ligands are both unknown. This article proposes an explanation for the purpose of this asialoglycoprotein receptor and its role in regulating the dynamic flux of galactosyl/N-acetylgalactosaminyl glycoconjugates in mammals.  相似文献   

8.
The Eph receptor tyrosine kinases are overexpressed in many pathologic tissues and have therefore emerged as promising drug target candidates. However, there are few molecules available that can selectively bind to a single Eph receptor and not other members of this large receptor family. Here we report the identification by phage display of peptides that bind selectively to different receptors of the EphB class, including EphB1, EphB2, and EphB4. Peptides with the same EphB receptor specificity compete with each other for binding, suggesting that they have partially overlapping binding sites. In addition, several of the peptides contain amino acid motifs found in the G-H loop of the ephrin-B ligands, which is the region that mediates high-affinity interaction with the EphB receptors. Consistent with targeting the ephrin-binding site, the higher affinity peptides antagonize ephrin binding to the EphB receptors. We also designed an optimized EphB4-binding peptide with affinity comparable with that of the natural ligand, ephrin-B2. These peptides should be useful as selective inhibitors of the pathological activities of EphB receptors and as targeting agents for imaging probes and therapeutic drugs.  相似文献   

9.
beta-Glucosidase was purified from lysosomal membranes isolated from rat liver. Binding and uptake of the purified beta-glucosidase were mediated via an apparently single binding site on rat peritoneal macrophages. The number of sites and the Kd were 4.20 X 10(4)/cell and 1.00 X 10(-7) M, respectively. Neither of the processes was inhibited by ligands for mannose/fucose receptors, mannose 6-phosphate receptors, or scavenger receptors, or by other glycoproteins and sugar compounds. A portion of the beta-glucosidase taken up into the macrophages was degraded rapidly. These results suggested that liver lysosomal beta-glucosidase was endocytosed via a receptor not previously described.  相似文献   

10.
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or ‘attractors’. We describe the synthesis, in vitro binding and selected in vivo toxicity data for γ-methylene γ-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognised by a single conformation of the EcR binding pocket.  相似文献   

11.
The transport of manganese from extrinsically labeled human milk, bovine milk and infant formula was studied by the everted intestinal sac method. Tissue/mucosal flux data indicated that transport of manganese into the intestinal tissue was significantly greater with bovine milk and formula than from human milk. Similarly, the total flux of manganese from the mucosal to serosal surface was less when human milk was used. Smaller molecular weight manganese binding ligands isolated from the milk samples enhanced the mucosal to tissue movement of manganese as contrasted to the higher molecular weight manganese binding ligands. Most significantly the data suggest that the transport and uptake of manganese is less in the presence of human milk and its isolated manganese fractions than it is in bovine milk or infant formula.  相似文献   

12.
Law PY  Wong YH  Loh HH 《Biopolymers》1999,51(6):440-455
The cloning of the opioid receptors allows the investigation of receptor domains involved in the peptidic and nonpeptidic ligand interaction and activation of the opioid receptors. Receptor chimera studies and mutational analysis of the primary sequences of the opioid receptors have provided insights into the structural domains required for the ligand recognition and receptor activation. In the current review, we examine the current reports on the possible involvement of extracellular domains and transmembrane domains in the high-affinity binding of peptidic and nonpeptidic ligands to the opioid receptor. The structural requirement for the receptors' selectivity toward different ligands is discussed. The receptor domains involved in the activation and subsequent cellular regulation of the receptors' activities as determined by mutational analysis will also be discussed. Finally, the validity of the conclusions based on single amino acid mutations is examined.  相似文献   

13.
Engineered receptor fragments and glycoprotein ligands employed in different assay formats have been used to dissect the basis for the dramatic enhancement of binding of two model membrane receptors, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the macrophage galactose lectin, to glycoprotein ligands compared to simple sugars. These approaches make it possible to quantify the importance of two major factors that combine to enhance the affinity of single carbohydrate-recognition domains (CRDs) for glycoprotein ligands by 100-to 300-fold. First, the presence of extended binding sites within a single CRD can enhance interaction with branched glycans, resulting in increases of fivefold to 20-fold in affinity. Second, presentation of glycans on a glycoprotein surface increases affinity by 15-to 20-fold, possibly due to low-specificity interactions with the surface of the protein or restriction in the conformation of the glycans. In contrast, when solution-phase networking is avoided, enhancement due to binding of multiple branches of a glycan to multiple CRDs in the oligomeric forms of these receptors is minimal and binding of a receptor oligomer to multiple glycans on a single glycoprotein makes only a twofold contribution to overall affinity. Thus, in these cases, multivalent interactions of individual glycoproteins with individual receptor oligomers have a limited role in achieving high affinity. These findings, combined with considerations of membrane receptor geometry, are consistent with the idea that further enhancement of the binding to multivalent glycoprotein ligands requires interaction of multiple receptor oligomers with the ligands.  相似文献   

14.
Membrane bound guanylyl cyclases are single chain transmembrane receptors that produce the second messenger cGMP by either intra- or extracellular stimuli. This class of type I receptors contain an intracellular catalytic guanylyl cyclase domain, an adjacent kinase-like domain and an extracellular ligand binding domain though some receptors have their ligands yet to be identified. The most studied member is the atrial natriuretic peptide (ANP) receptor, which is involved in blood pressure regulation. Extracellular ANP binding induces a conformational change thereby activating the pre-oligomerized receptor leading to the production of cGMP. The recent crystal structure of the dimerized hormone binding domain of the ANP receptor provides a first three-dimensional view of this domain and can serve as a basis to structurally analyze mutagenesis, cross-linking, and genetic studies of this class of receptors as well as a non-catalytic homolog, the clearance receptor. The fold of the ligand binding domain is that of a bilobal periplasmic binding protein (PBP) very similar to that of the Leu/Ile/Val binding protein, AmiC, multi-domain transmembrane metabotropic glutamate receptors, and several DNA binding proteins such as the lactose repressor. Unlike these structural homologs, the guanylyl cyclase receptors bind much larger molecules at a site seemingly remote from the usual small molecule binding site in periplasmic binding protein folds. Detailed comparisons with these structural homologs offer insights into mechanisms of signal transduction and allosteric regulation, and into the remarkable usage of the periplasmic binding protein fold in multi-domain receptors/proteins.  相似文献   

15.
The regulation of monocyte-derived neutrophil chemotactic factor (MDNCF)/interleukin 8 (IL 8) receptor expression by the MDNCF/IL 8 ligand was examined using freshly isolated human peripheral blood neutrophils. MDNCF/IL 8 down-regulated greater than 90% of its own receptor expression within 10 min at 37 degrees C. This down-regulation was associated with internalization of the ligand. The radiolabeled MDNCF/IL 8 molecules after internalization were proteolytically degraded, and trichloroacetic acid-soluble molecules were released into the culture medium starting at 60 min. Lysosomotropic agents could inhibit this degradation of ligand suggesting the involvement of lysosomal enzymes in this proteolytic digestion. MDNCF/IL 8 receptors reappeared on the cell surface within 10 min after removal of free ligands from the culture medium. Cycloheximide did not alter the reappearance of the receptor suggesting that de novo protein synthesis of MDNCF/Il 8 receptors is not involved in this event and that receptors probably recycled. The addition of lysosomotropic agents partially inhibited the reappearance/recycling of the receptors, although none of these agents inhibited the binding of ligand to the surface receptors or ligand internalization. Ammonium chloride reduced the MDNCF/IL 8-induced neutrophil chemotactic response in a dose-dependent fashion. These data suggest that MDNCF/IL 8 receptor expression is dynamically regulated by MDNCF/IL 8 and that the rapid recycling of MDNCF/IL 8 receptors may be essential for the chemotactic response of neutrophils.  相似文献   

16.
alpha 2-Adrenergic receptors recognize a number of molecules with diverse chemical structures, including the yohimban diastereoisomers yohimbine and rauwolscine, catecholamines, guanidinium analogs, and imidazolines, such as clonidine. The affinity of the receptor protein for some of these ligands can vary by 10-100-fold among various tissues and species, suggesting a heterogeneous class of binding sites. Certain cellular effects elicited by the compounds possessing an imidazoline or guanidinium moiety may actually be mediated by a membrane receptor distinct from the alpha 2-adrenergic receptor. To determine whether this imidazoline/guanidinium receptive site (IGRS) and the alpha 2-adrenergic receptor represent distinct proteins, we solubilized and partially characterized the two binding sites in rabbit kidney. This tissue expresses both alpha 2-adrenergic receptors and high affinity imidazoline/guanidinium binding sites, the latter which are rauwolscine-insensitive but can be identified with the benzodioxan [3H]idazoxan. The IGRS and alpha 2-adrenergic receptor in rabbit kidney exhibit distinct ligand recognition properties, which are maintained after solubilization and partial purification. In addition, the two receptors can be physically separated by heparin-agarose or lectin affinity chromatography indicating that the two binding sites are distinct entities. [3H]Idazoxan binding is trypsin-sensitive, indicating that the IGRS is a protein rather than a lipid component of the plasma membrane. [3H]Idazoxan binding is not inhibited by endogenous agonists for known neurotransmitter receptors. However, the IGRS does recognize clonidine-displacing substance, a small non-catechol compound isolated from calf brain, suggesting the existence of a previously uncharacterized hormonal/neurotransmitter receptor system.  相似文献   

17.
We have analyzed the interaction of phosphorylated oligosaccharides and lysosomal enzymes with immobilized bovine liver cation-dependent mannose-6-P receptor. Oligosaccharides with phosphomonoesters were the only species that interacted with the receptor, and molecules with two phosphomonoesters showed the best binding. Lysosomal enzymes with several oligosaccharides containing only one phosphomonoester had a higher affinity for the receptor than did the isolated oligosaccharides, indicating the possible importance of multivalent interactions between weakly binding ligands and the receptor. The binding of a mixture of phosphorylated lysosomal enzymes to the cation-dependent Man-6-P receptor was markedly influenced by pH. At pH 6.3, almost all of the lysosomal enzymes bound to the receptor; whereas at pH 7.0-7.5, approximately one-third of the material passed through the column, one-third interacted weakly, and one-third bound tightly. The distribution of individual lysosomal enzyme activities was similar to that of the total material. The species of phosphorylated oligosaccharides present on the lysosomal enzymes which interacted poorly with the receptor were similar to those found on the tightly bound material and included species of oligosaccharides with two phosphomonoester groups. Isolated oligosaccharides of this type bound to the receptor over the entire pH range tested. These findings indicate that at neutral pH the phosphorylated oligosaccharides on some lysosomal enzyme molecules are oriented in a manner which makes them inaccessible to the binding site of the cation-dependent Man-6-P receptor. Since the same enzymes bind to the cation-independent Man-6-P receptor at neutral pH, at least a portion of the phosphomannosyl residues must be exposed. We conclude that small variations in the pH of the Golgi compartment where lysosomal enzymes bind to the receptors could potentially modulate the extent of binding to the two receptors.  相似文献   

18.
Benzodiazepine receptor (BDZR) ligands are structurally diverse compounds that bind to specific binding sites on GABAA receptors and allosterically modulate the effect of GABA on chloride flux. The binding of BDZR ligands to this receptor system results in activity at multiple behavioral end points including anxiolytic, sedative, hyperphagic, anticonvulsant and hyperthermic effects. In the work presented here, 17 structurally diverse BDZR ligands of the receptors initiating the anxiolytic response have been studied using a systematic computational procedure developed in our laboratory. Using this procedure, a five component 3D recognition pharmacophore was obtained consisting of two proton acceptors, a hydrophobic group, an aromatic electron accepting ring and a ring containing polar moieties, all found in a common geometric arrangement in the 15 compounds with an effect at the anxiolytic end point and absent in two control compounds. The 3D pharmacophore developed was validated by searching 3D databases and finding known BDZR ligands active at the anxiolytic end point, including 1,4-BDZ derivatives, imidazo BDZ and beta-carboline ligands.  相似文献   

19.
The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) and gp330, two members of the low density lipoprotein receptor gene family, share a multitude of cysteine-rich repeats. LRP has been shown to act as an endocytosis-mediating receptor for several ligands, including protease-antiprotease complexes and plasma lipoproteins. The former include alpha 2-macroglobulin-protease complexes and plasminogen activator inhibitor-activator complexes. The latter include chylomicron remnant-like particles designated beta-very low density lipoproteins (beta-VLDL) complexed with apoprotein E or lipoprotein lipase. The binding specificity of gp330 is unknown. In the current studies we show that gp330 from rat kidney membranes binds several of these ligands on nitrocellulose blots. We also show that both LRP and gp330 bind an additional ligand, bovine lactoferrin, which is known to inhibit the hepatic clearance of chylomicron remnants. Lactoferrin blocked the LRP-dependent stimulation of cholesteryl ester synthesis in cultured human fibroblasts elicited by apoprotein E-beta-VLDL or lipoprotein lipase-beta-VLDL complexes. Cross-competition experiments in fibroblasts showed that the multiple ligands recognize at least three distinct, but partially overlapping sites on the LRP molecule. Binding of all ligands to LRP and gp330 was inhibited by the 39-kDa protein, which co-purifies with the two receptors, suggesting that the 39-kDa protein is a universal regulator of ligand binding to both receptors. The correlation of the inhibitory effects of lactoferrin in vivo and in vitro support the notion that LRP functions as a chylomicron remnant receptor in liver. LRP and gp330 share a multiplicity of binding sites, and both may function as endocytosis-mediating receptors for a large number of ligands in different organs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号