首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Electron microscopy of cat parotid glands revealed great heterogeneity in the secretory granules of normal unstimulated acinar cells. Electrical stimulation of the parasympathetic nerve to the gland evoked a copious flow of parotid saliva which was accompanied by an extensive depletion of the secretory granules from the acinar cells. Exocytosis was captured as it was occurring by means of perfusion-fixation, and showed that the events occur in a conventional manner. Stimulation of the sympathetic nerve caused only a very small flow of saliva, and no acinar degranulation was detected. It can be concluded that the parasympathetic secretomotor axons provide the main drive for parotid acinar degranulation in the cat. This contrasts with the rat in which sympathetic impulses provide the main stimulus for parotid acinar degranulation. These dissimilarities serve to emphasise how extensively species differences may influence autonomic responses in salivary glands.  相似文献   

2.
Regulation of calcium handling by rat parotid acinar cells   总被引:1,自引:1,他引:0  
Summary Salivary gland fluid secretion following neurotransmitter stimulation is Ca2+-dependent. We have studied the control of cellular Ca2+ following secretory stimuli in rat parotid gland acinar cells. After muscarinic-cholinergic receptor activation, cytosolic Ca2+ is elevated 4–5 fold, due to both intracellular Ca2+ pool mobilization and extracellular Ca2+ entry. Fluid movement ensues due to the Ca2+-activated enhancement of membrane permeability to K+ and Cl. Basal cytosolic Ca2+ levels are tightly controlled at 150–200 nM through the action of high affinity and high capacity ATP-dependent Ca2+ transporters in the basolateral and endoplasmic reticulum membranes. Activity of these Ca2+ transporters can be modulated to facilitate rapid responsiveness and a sustained fluid secretory response necessary for alimentary function.  相似文献   

3.
The activation of beta-adrenergic receptors in rat parotid acinar cells causes intracellular cAMP elevation and appreciably stimulates the exocytotic release of amylase into saliva. The activation of Ca(2+)-mobilizing receptors also induces some exocytosis. We investigated the role of phospholipase D (PLD) in regulated exocytosis in rat parotid acinar cells. A transphosphatidylation assay detected GTPgammaS (a nonhydrolyzable analogue of GTP)-dependent PLD activity in lysates of rat parotid acinar cells, suggesting that PLD is activated by small molecular mass GTP-binding proteins. The PLD inhibitor, neomycin, suppressed cAMP-dependent exocytosis in saponin-permeabilized cells. Signaling downstream of PLD was disrupted by 1-butanol due to conversion of the PLD reaction product (phosphatidic acid) to phosphatidylbutanol. The stimulation of exocytosis by isoproterenol as well as by a Ca(2+)-mobilizing agonist (methacholine) was inhibited by 1-butanol. These results suggest that PLD is important for regulated exocytosis in rat parotid acinar cells.  相似文献   

4.
Summary The mechanism for acidification of zymogen granules in acinar cells of mouse parotid gland was explored using acridine orange, lysosomotropic agents, and an inhibitor of cellular ATP production. Methylamine and monensin reversibly collapsed the pH gradient of granules without affecting cellular ATP levels. Depletion of cellular ATP with antimycin A did not collapse the pH gradient. However, recovery of acidity in the granules, after collapse of the pH gradient by methylamine, was blocked by depletion of cellular ATP. These results demonstrate that zymogen granules of parotid gland are acidic in situ and that ATP is required for acidification of the granules.  相似文献   

5.
Cysteine string proteins (CSPs) are secretory vesicle chaperone proteins that contain: (i) a heavily palmitoylated cysteine string (comprised of 14 cysteine residues, responsible for the localization of CSP to secretory vesicle membranes), (ii) an N-terminal J-domain (DnaJ domain of Hsc70, 70 kDa heat-shock cognate protein family of co-chaperones), and (iii) a linker domain (important in mediating CSP effects on secretion). In this study, we investigated the localization of CSP1 in rat parotid acinar cells and evaluated the role of CSP1 in parotid secretion. RT-PCR and western blotting revealed that CSP1 was expressed and associated with Hsc70 in rat parotid acinar cells. Further, CSP1 associated with syntaxin 4, but not with syntaxin 3, on the apical plasma membrane. Introduction of anti-CSP1 antibody into SLO-permeabilized acinar cells enhanced isoproterenol (IPR)-induced amylase release. Introduction of GST-CSP11–112, containing both the J-domain and the adjacent linker region, enhanced IPR-induced amylase release, whereas neither GST-CSP11–82, containing the J-domain only, nor GST-CSP183–112, containing the linker region only, did produce detectable enhancement. These results indicated that both the J-domain and the linker domain of CSP1 are necessary to function an important role in acinar cell exocytosis.  相似文献   

6.
Summary A morphometric study has been made at the EM level of Isoproterenol (IPR) induced secretion of rabbit parotid glands in vivo. Emphasis has been placed here on the membrane content of acinar cells and the changes which occur following induced degranulation. In particular it was hoped to establish whether the preservation of zymogen granule membrane as intact electron microscopically visible subunits and the subsequent reutilisation of this membrane is a plausible hypothesis from a quantitative morphological standpoint.After two hours IPR had caused >95% depletion of granules. About 1343 m2/cell of granule limiting membrane temporarily fused with the apical plasmalemma during this time and by two hours 1158 m2/cell of this had been eliminated. Only a small increase in intracellular smooth membrane area was recorded after degranulation and we find no evidence that the zymogen granule membrane is stored indefinitely as smooth membrane fragments either in the region of the Golgi apparatus or elsewhere in the cytoplasm.IPR caused changes in RER membrane area (+37.7%, 1406 m2/cell), which is a possible, but we consider implausible relocation site of granule membrane.The possible mechanism of the removal of excess apical membrane and the ultimate fate of the zymogen granule membrane is discussed.  相似文献   

7.
Summary The previous finding that intracellular transport of secretory proteins in the rat exocrine pancreas is accelerated by in vivo stimulation with a pancreatic secretagogue has been further analyzed. Using a radioassay for discharge of newly synthesized proteins, the rate of release was compared in control and prestimulated lobules. In control preparations discharge occurred with an initial lag period of 30 minutes and a maximum after two hours of incubation. After in vivo infusion of 5 × 10-8 g/hr. caerulein for 24 h in vitro discharge started after 10 minutes of in vitro incubation and attained a maximal rate after one hour. Using the same radioassay and several inhibitors of intracellular transport and granule discharge, it could be demonstrated that both processes were reduced to the same extent in controls and in lobules with accelerated transport. To obtain direct evidence for the degree of acceleration of the different transport steps between rough endoplasmic reticulum, Golgi complex and zymogen granules, the respective subcellular fractions of these organelles prepared and characterized ultrastructurally and biochemically. The rate of disappearance of newly formed proteins from rough microsomes and the appearance in smooth microsomes and zymogen granules were significantly increased after in vivo stimulation. The data substantiate an acceleration of the regular transport steps by the secretagogue. There was no indication that a high level of secretory activity leads to a rerouting of secretory proteins or to an omission of one of the regular steps in intracellular transport.Supported by a grant from Deutsche Forschungsgemeinschaft Bonn-Bad Godesberg (Ke 113/10) The expert technical assistance of Miss Hiltraud Hosser and Miss Helga Hollerbach is gratefully acknowledged  相似文献   

8.
Summary We have successfully maintained and biochemically characterized differentiated rat parotid acinar cells cultured for long periods (6 mo.). The cells were cultured on a reconstituted basement membrane matrix in a medium containing a variety of agents that promote cellular proliferation and differentiation. The cultured cells retain the characteristics of the parental parotid acinar cells. They exhibit both secretory granules and abundant cellular organelles required for protein synthesis and secretion. In situ hybridization and immunocytochemistry demonstrate high levels of proline-rich protein mRNA and protein, and lower levels of amylase mRNA and protein, in their cytoplasm. These findings suggest that rat parotid acinar cells can be maintained in a differentiated state in vitro for long periods, and can serve as a useful model system for studying the regulation of exocrine secretory processes.  相似文献   

9.
We have previously reported that rat parotid gland basolateral plasma membrane vesicles (BLMV) have a relatively high affinity Ca2+ transport pathway and an unsaturable Ca2+ flux component (Lockwich et al., 1994. J. Membrane Biol. 141:289–296). In this study, we have solubilized BLMV with octylglucoside (1.5%) and have reconstituted the solubilized proteins into proteoliposomes (PrL) composed of E. coli bulk phospholipids, by using a detergent dilution method. PrL exhibited 3–5-fold higher 45Ca2+ influx than control liposomes (without protein). Ca2+ uptake into PrL was dependent on the [protein] in PrL and steady state [Ca2+] in PrL was in equilibrium with external [Ca2+]. These data demonstrate that a passive, protein-mediated Ca2+ transport has been reconstituted from BLMV into PrL. 45Ca2+ influx into liposomes did not saturate with increasing [Ca2+] in the assay medium. In contrast, PrL displayed saturable 45Ca2+ influx and exhibited a single Ca2+ flux component with an apparent K ca=242 ± 50.9 m and V max=13.5 ± 1.14 nmoles Ca2+/mg protein/ minute. The K ca of Ca2+-transport in PrL was similar to that of the high affinity Ca2+ influx component in BLMV while the V max was about 4-fold higher. The unsaturable Ca2+ flux component was not detected in PrL. 45Ca2+ influx in PrL was inhibited by divalent cations in the order of efficacy, Zn2+>Mn2+>Co2+=Ni2+, and appeared to be more sensitive to lower concentrations of Zn2+ than in BLMV. Consistent with our observations with BLMV, the carboxyl group reagent N,N-dicyclohexylcarbodiimide (DCCD) inhibited the reconstituted Ca2+ transport in PrL. Importantly, in both BLMV and PrL, DCCD induced a 40–50% decrease in V max of Ca2+ transport without an alteration in K ca. These data strongly suggest that the high affinity, passive Ca2+ transport pathway present in BLMV has been functionally reconstituted into PrL. We suggest that this approach provides a useful experimental system towards isolation of the protein(s) involved in mediating Ca2+ influx in the rat parotid gland basolateral plasma membrane.We thank Dr. Bruce Baum for his constant support and encouragement. We also thank Ms. Grace Park and all our colleagues for their assistance during the course of this work.  相似文献   

10.
11.
Summary The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO 3 -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated twofold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring 15 min of acinar incubation with carbachol to reach completion, and ws blocked by the presence of the muscarinic antagonist atropine (2×10–5 m) in the pretreatment medium. The effect of carbachol was dose dependent withK 0.53×10–6 m. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the -adrenergic agonist epinephrine, but not with the -adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increasedapparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluidsecretory response of the rat parotid.  相似文献   

12.
Conclusions While it is generally accepted that Ca2+ plays an important regulatory role in the physiology of a number of non-excitable cells, the mechanisms which regulate intracellular [Ca2+ are far from well established. Ca2+ transporting mechanisms which distribute Ca2+ intracellularly as well as those which allow influx of extracellular Ca2+ are involved in mediating intracellular Ca2+ homestasis. In this paper we have described recent studies on the regulation of the Ca2+ influx system in the data, it appears that the process of Ca2+ entry is extremely complex and may involve several levels of regulation. Understanding the molecular basis of these regulatory mechanisms presents a challeging problem for future studies.  相似文献   

13.
Rat parotid gland was examined for the presence of 1α,25-dihydroxycholecalciferol receptors using sucrose density gradient ultracentrifugation techniques. [3H]DHCC bound specifically and with high affinity to a 3.2 S protein present in nuclear and cytosolic fractions of isolated parotid acinar cells. Values for the equilibrium dissociation constant and for the receptor concentration were determined to be approx. 0.1 nM, and 12 fmol/mg protein, respectively. In competitive inhibition experiments, the 3.2 S protein displayed 100-fold lower affinity for 25-hydroxycholecalciferol than for DHCC, and did not bind estradiol or methylprednisolone. These results suggest that rat parotid gland acinar cells contain classical DHCC receptors. A similar approach failed to provide evidence of DHCC receptors in isolated pancreas acinar cells, lacrimal gland or submandibular gland. It has been previously reported that vitamin D is essential for normal exocrine secretion from the rat parotid gland (Tenenhouse, A. and Afari, G. (1978) Biochim. Biophys. Acta 538, 631–634). The present findings suggest that this effect is the result of a direct action of DHCC on the parotid gland acinar cell. The absence of DHCC receptors in other exocrine cells suggests that tissue sensitivity to DHCC is not a general property of exocrine systems.  相似文献   

14.
15.
16.
17.
It is well-known that amylase is secreted in response to extracellular stimulation from the acinar cells. However, amylase is also secreted without stimulation. We distinguished vesicular amylase as a newly synthesized amylase from the accumulated amylase in secretory granules by short time pulse and chased with 35S-amino acid. The newly synthesized amylase was secreted without stimulation from secretory vesicles in rat parotid acinar cells. The secretion process did not include microtubules, but was related to microfilaments. p-Nitrophenyl β-xyloside, an inhibitor of proteoglycan synthesis, inhibited the newly synthesized amylase secretion. This indicated that the newly synthesized amylase was secreted from secretory vesicles, not via the constitutive-like secretory route, which includes the immature secretory granules, and that proteoglycan synthesis was required for secretory vesicle formation.  相似文献   

18.
Ion transporters such as Na(+)/H(+) exchanger (NHE), Cl(-)/HCO(3)(-) exchanger (AE), and Na(+)/HCO(3)(-) cotransporter (NBC) are known to contribute to the intracellular pH (pH(i)) regulation during agonist-induced stimulation. This study examined the mechanisms for the pH(i) regulation in the mouse parotid and sublingual acinar cells using the fluorescent pH-sensitive probe, BCECF. The pH(i) recovery from agonist-induced acidification in the sublingual acinar cells was completely blocked by EIPA, a NHE inhibitor. However, the parotid acinar cells required DIDS, a NBC1 inhibitor, in addition to EIPA in order to block the pH(i) recovery. Moreover, RT-PCR analysis detected the expression of pancreatic NBC1 (pNBC1) only in the parotid acinar cells. These results provide strong evidence that the mechanisms for the pH(i) regulation are different in the two types of acinar cells, and pNBC1 contributes to pH(i) regulation in the parotid acinar cells, whereas NHE is likely to be the exclusive pH(i) regulator in the sublingual acinar cells.  相似文献   

19.
In mammalian cells, the intracellular availability of zinc influences numerous crucial processes. Its distribution has previously been visualized with several fluorescent probes, but it was unclear how these probes are compartmentalized within the cell. Here, we show that in C6 cells the zinc-specific probe Zinquin is evenly distributed. Thus, the significantly lower level of fluorescence in the nucleus and a punctuate vesicular staining are real differences in the concentrations of zinc. Chemical perturbation of the steady state by releasing intracellular protein-bound zinc with the sulfhydryl-reactive N-ethylmaleimide (NEM) resulted in a vanadate sensitive transport of zinc out of the nucleus and into zincosomes. If the zinc-release was performed with the histidine-reactive diethylpyrocarbonate, sequestration was reduced compared to treatment with NEM, indicating the importance of histidine within membrane zinc transporters. Another major factor regulating the zinc homeostasis is ion export. As determined by atomic absorption spectroscopy, up to 50% of the cellular zinc was exported by a mechanism sensitive to lanthanum ions. We conclude that different concentrations of labile zinc exist in different cellular compartments, which are maintained by export and intracellular transport of zinc.  相似文献   

20.
Summary The role of functional activity in mediating compensatory enlargement of the parotid gland after removal of the other major salivary glands was investigated. Increased levels of activity were achieved by feeding rats a bulk diet. Conversely, a liquid diet was used to reduce the functional demands on the parotid. It was found that the liquid diet completely prevented the compensatory response from occurring. Bulk diet, on the other hand, caused an even greater compensatory response than did the standard chow diet. Compensatory enlargement of the parotid, therefore, depends on its functional activity and not on other, e.g., humoral factors dissociated from function. The character of the cellular response in compensatory enlargement was also examined. The chow diet caused compensatory enlargement by an increase in cell size with little, if any, increase in cell number.Supported in part by the Veterans Administration and Grant DE 02110 of the U.S. Public Health Service  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号