首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enveloped animal viruses infect cells via fusion of the viral membrane with a host cell membrane. Fusion is mediated by a viral envelope glycoprotein, which for a number of enveloped animal viruses rearranges itself during fusion to form a trimeric alpha-helical coiled-coil structure. This conformational change from the metastable, nonfusogenic form of the spike protein to the highly stable form involved in fusion can be induced by physiological activators of virus fusion and also by a variety of destabilizing conditions. The E1 spike protein subunit of Semliki Forest virus (SFV) triggers membrane fusion upon exposure to mildly acidic pH and forms a homotrimer that appears necessary for fusion. We have here demonstrated that formation of the E1 homotrimer was efficiently triggered under low-pH conditions but not by perturbants such as heat or urea, despite their induction of generalized conformational changes in the E1 and E2 subunits and partial exposure of an acid-specific E1 epitope. We used a sensitive fluorescence assay to show that neither heat nor urea treatment triggered SFV-liposome fusion at neutral pH, although either treatment inactivated subsequent low-pH-triggered fusion activity. Once formed, the low-pH-induced E1 homotrimer was very stable and was only dissociated under harsh conditions such as heating in sodium dodecyl sulfate. Taken together, these data, as well as protein structure predictions, suggest a model in which the less stable native E1 subunit specifically responds to low pH to form the more stable E1 homotrimer via conformational changes different from those of the coiled-coil type of fusion proteins.  相似文献   

2.
The mechanism of membrane fusion by “class II” viral fusion proteins follows a pathway that involves large-scale domain rearrangements of the envelope glycoprotein (E) and a transition from dimers to trimers. The rearrangement is believed to proceed by an outward rotation of the E ectodomain after loss of the dimer interface, followed by a reassociation into extended trimers. The ∼55-aa-residue, membrane proximal “stem” can then zip up along domain II, bringing together the transmembrane segments of the C-terminus and the fusion loops at the tip of domain II. We find that peptides derived from the stem of dengue-virus E bind stem-less E trimer, which models a conformational intermediate. In vitro assays demonstrate that these peptides specifically block viral fusion. The peptides inhibit infectivity with potency proportional to their affinity for the conformational intermediate, even when free peptide is removed from a preincubated inoculum before infecting cells. We conclude that peptides bind virions before attachment and are carried with virions into endosomes, the compartment in which acidification initiates fusion. Binding depends on particle dynamics, as there is no inhibition of infectivity if preincubation and separation are at 4°C rather than 37°C. We propose a two-step model for the mechanism of fusion inhibition. Targeting a viral entry pathway can be an effective way to block infection. Our data, which support and extend proposed mechanisms for how the E conformational change promotes membrane fusion, suggest strategies for inhibiting flavivirus entry.  相似文献   

3.
Membrane fusion mediated by coiled coils: a hypothesis   总被引:6,自引:0,他引:6       下载免费PDF全文
A molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis.  相似文献   

4.
Stiasny K  Heinz FX 《Journal of virology》2004,78(16):8536-8542
Enveloped viruses enter cells by fusion of their own membrane with a cellular membrane. Incorporation of inverted-cone-shaped lipids such as lysophosphatidylcholine (LPC) into the outer leaflet of target membranes has been shown previously to impair fusion mediated by class I viral fusion proteins, e.g., the influenza virus hemagglutinin. It has been suggested that these results provide evidence for the stalk-pore model of fusion, which involves a hemifusion intermediate (stalk) with highly bent outer membrane leaflets. Here, we investigated the effect of inverted-cone-shaped LPCs and the cone-shaped oleic acid (OA) on the membrane fusion activity of a virus with a class II fusion protein, the flavivirus tick-borne encephalitis virus (TBEV). This study included an analysis of lipid mixing, as well as of the steps preceding or accompanying fusion, i.e., binding to the target membrane and lipid-induced conformational changes in the fusion protein E. We show that the presence of LPC in the outer leaflet of target liposomes strongly inhibited TBEV-mediated fusion, whereas OA caused a very slight enhancement, consistent with a fusion mechanism involving a lipid stalk. However, LPC also impaired the low-pH-induced binding of a soluble form of the E protein to liposomes and its conversion into a trimeric postfusion structure that requires membrane binding at low pH. Because inhibition is already observed before the lipid-mixing step, it cannot be determined whether impairment of stalk formation is a contributing factor in the inhibition of fusion by LPC. These data emphasize, however, the importance of the composition of the target membrane in its interactions with the fusion peptide that are crucial for the initiation of fusion.  相似文献   

5.
Vesiculoviruses enter cells by membrane fusion, driven by a large, low-pH-induced, conformational change in the fusion glycoprotein (G) that involves transition from a trimeric pre-fusion to a trimeric post-fusion state. G is the model of class III fusion glycoproteins which also includes the fusion glycoproteins of herpesviruses (gB) and baculoviruses (gp64). Class III fusion proteins combine features of the previously characterized class I and class II fusion proteins. In this review, we first present and discuss the data that indicate that the Vesiculovirus G structural transition proceeds through monomeric intermediates. Then, we focus on a recently determined crystal structure of the Chandipura virus G ectodomain that contained two monomeric intermediate conformations of the glycoprotein, revealing the chronological order of the structural changes in the protein and offering a detailed pathway for the conformational change, in agreement with electron microscopy data. In the crystal, the intermediates were associated through their fusion domain in an antiparallel manner to form an intermolecular β-sheet. Mutagenesis indicated that this interface is functionally relevant. All those structural data challenge the current model proposed for viral membrane fusion. Therefore, we wonder if this mode of operating is specific to Vesiculovirus G and discuss data indicating that class II fusion glycoproteins are monomeric when they interact with the target membrane but also crystal structures suggesting the existence of non-trimeric intermediates for influenza hemagglutinin which is the prototype of class I fusion proteins.  相似文献   

6.
The fusion proteins of the alphaviruses and flaviviruses have a similar native structure and convert to a highly stable homotrimer conformation during the fusion of the viral and target membranes. The properties of the alpha- and flavivirus fusion proteins distinguish them from the class I viral fusion proteins, such as influenza virus hemagglutinin, and establish them as the first members of the class II fusion proteins. Understanding how this new class carries out membrane fusion will require analysis of the structural basis for both the interaction of the protein subunits within the homotrimer and their interaction with the viral and target membranes. To this end we report a purification method for the E1 ectodomain homotrimer from the alphavirus Semliki Forest virus. The purified protein is trimeric, detergent soluble, retains the characteristic stability of the starting homotrimer, and is free of lipid and other contaminants. In contrast to the postfusion structures that have been determined for the class I proteins, the E1 homotrimer contains the fusion peptide region responsible for interaction with target membranes. This E1 trimer preparation is an excellent candidate for structural studies of the class II viral fusion proteins, and we report conditions that generate three-dimensional crystals suitable for analysis by X-ray diffraction. Determination of the structure will provide our first high-resolution views of both the low-pH-induced trimeric conformation and the target membrane-interacting region of the alphavirus fusion protein.  相似文献   

7.
Membrane fusion of the flavivirus tick-borne encephalitis virus is triggered by the mildly acidic pH of the endosome and is mediated by envelope protein E, a class II viral fusion protein. The low-pH trigger induces an oligomeric rearrangement in which the subunits of the native E homodimers dissociate and the monomeric subunits then reassociate into homotrimers. Here we provide evidence that membrane binding is mediated by the intermediate monomeric form of E, generated by low-pH-induced dissociation of the dimer. Liposome coflotation experiments revealed that association with target membranes occurred only when liposomes were present at the time of acidification, whereas pretreating virions at low pH in the absence of membranes resulted in the loss of their ability to stably attach to liposomes. With the cleavable cross-linker ethylene glycolbis(succinimidylsuccinate), it was shown that a truncated soluble form of the E protein (sE) could bind to membranes only when the dimers were free to dissociate at low pH, and binding could be blocked by a monoclonal antibody that recognizes the fusion peptide, which is at the distal tip of the E monomer but is buried in the native dimer. Surprisingly, analysis of the membrane-associated sE proteins revealed that they had formed trimers. This was unexpected because this protein lacks a sequence element in the C-terminal stem-anchor region, which was shown to be essential for trimerization in the absence of a target membrane. It can therefore be concluded that the formation of a trimeric form of sE is facilitated by membrane binding. Its stability is apparently maintained by contacts between the ectodomains only and is not dependent on sequence elements in the stem-anchor region as previously assumed.  相似文献   

8.
The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus is, like the alphavirus E1 protein, a class II viral fusion protein that differs structurally and probably mechanistically from class I viral fusion proteins. The surface of the native TBE virion is covered by an icosahedrally symmetrical network of E homodimers, which mediate low-pH-induced fusion in endosomes. At the pH of fusion, the E homodimers are irreversibly converted to a homotrimeric form, which we have found by intrinsic fluorescence measurements to be more stable than the native dimers. Thus, the TBE virus E protein is analogous to the prototypical class I fusion protein, the influenza virus hemagglutinin (HA), in that it is initially synthesized in a metastable state that is energetically poised to be converted to the fusogenic state by exposure to low pH. However, in contrast to what has been observed with influenza virus HA, this transition could not be triggered by input of heat energy alone and membrane fusion could be induced only when the virus was exposed to an acidic pH. In a previous study we showed that the dimer-to-trimer transition appears to be a two-step process involving a reversible dissociation of the dimer followed by an irreversible trimerization of the dissociated monomeric subunits. Because the dimer-monomer equilibrium in the first step apparently depends on the protonation state of E, the lack of availability of monomers for the trimerization step at neutral pH could explain why low pH is essential for fusion in spite of the metastability of the native E dimer.  相似文献   

9.
Group II nucleopolyhedroviruses (NPVs), e.g., Spodoptera exigua MNPV, lack a GP64-like protein that is present in group I NPVs but have an unrelated envelope fusion protein named F. In contrast to GP64, the F protein has to be activated by a posttranslational cleavage mechanism to become fusogenic. In several vertebrate viral fusion proteins, the cleavage activation generates a new N terminus which forms the so-called fusion peptide. This fusion peptide inserts in the cellular membrane, thereby facilitating apposition of the viral and cellular membrane upon sequential conformational changes of the fusion protein. A similar peptide has been identified in NPV F proteins at the N terminus of the large membrane-anchored subunit F(1). The role of individual amino acids in this putative fusion peptide on viral infectivity and propagation was studied by mutagenesis. Mutant F proteins with single amino acid changes as well as an F protein with a deleted putative fusion peptide were introduced in gp64-null Autographa californica MNPV budded viruses (BVs). None of the mutations analyzed had an major effect on the processing and incorporation of F proteins in the envelope of BVs. Only two mutants, one with a substitution for a hydrophobic residue (F152R) and one with a deleted putative fusion peptide, were completely unable to rescue the gp64-null mutant. Several nonconservative substitutions for other hydrophobic residues and the conserved lysine residue had only an effect on viral infectivity. In contrast to what was expected from vertebrate virus fusion peptides, alanine substitutions for glycines did not show any effect.  相似文献   

10.
The Bunyaviridae family of enveloped RNA viruses includes five genuses, orthobunyaviruses, hantaviruses, phleboviruses, nairoviruses and tospoviruses. It has not been determined which Bunyavirus protein mediates virion:cell membrane fusion. Class II viral fusion proteins (beta-penetrenes), encoded by members of the Alphaviridae and Flaviviridae, are comprised of three antiparallel beta sheet domains with an internal fusion peptide located at the end of domain II. Proteomics computational analyses indicate that the carboxyl terminal glycoprotein (Gc) encoded by Sandfly fever virus (SAN), a phlebovirus, has a significant amino acid sequence similarity with envelope protein 1 (E1), the class II fusion protein of Sindbis virus (SIN), an Alphavirus. Similar sequences and common structural/functional motifs, including domains with a high propensity to interface with bilayer membranes, are located collinearly in SAN Gc and SIN E1. Gc encoded by members of each Bunyavirus genus share several sequence and structural motifs. These results suggest that Gc of Bunyaviridae, and similar proteins of Tenuiviruses and a group of Caenorhabditis elegans retroviruses, are class II viral fusion proteins. Comparisons of divergent viral fusion proteins can reveal features essential for virion:cell fusion, and suggest drug and vaccine strategies.  相似文献   

11.
The flavivirus envelope protein E undergoes irreversible conformational changes at a mildly acidic pH which are believed to be necessary for membrane fusion in endosomes. In this study we used a combination of chemical cross-linking and sedimentation analysis to show that the envelope proteins of the flavivirus tick-borne encephalitis virus also change their oligomeric structure when exposed to a mildly acidic environment. Under neutral or slightly alkaline conditions, protein E on the surface of native virions exists as a homodimer which can be isolated by solubilization with the nonionic detergent Triton X-100. Solubilization with the same detergent after pretreatment at an acidic pH, however, yielded homotrimers rather than homodimers, suggesting that exposure to an acidic pH had induced a simultaneous weakening of dimeric contacts and a strengthening of trimeric ones. The pH threshold for the dimer-to-trimer transition was found to be 6.5. Because the pH dependence of this transition parallels that of previously observed changes in the conformation and hydrophobicity of protein E and that of virus-induced membrane fusion, it appears likely that the mechanism of fusion with endosomal membranes involves a specific rearrangement of the proteins in the viral envelope. Immature virions in which protein E is associated with the uncleaved precursor (prM) of the membrane protein M did not undergo a low-pH-induced rearrangement. This is consistent with a protective role of protein prM for protein E during intracellular transport of immature virions through acidic compartments of the trans-Golgi network.  相似文献   

12.
The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus promotes cell entry by inducing fusion of the viral membrane with an intracellular membrane after uptake by endocytosis. This protein differs from other well-studied viral and cellular fusion proteins because of its distinct molecular architecture and apparent lack of involvement of coiled coils in the low-pH-induced structural transitions that lead to fusion. A highly conserved loop (the cd loop), which resides at the distal tip of each subunit and is mostly buried in the subunit interface of the native E homodimer at neutral pH, has been hypothesized to function as an internal fusion peptide at low pH, but this has not yet been shown experimentally. It was predicted by examination of the X-ray crystal structure of the TBE virus E protein (F. A. Rey et al., Nature 375:291-298, 1995) that mutations at a specific residue within this loop (Leu 107) would not cause the native structure to be disrupted. We therefore introduced amino acid substitutions at this position and, using recombinant subviral particles, investigated the effects of these changes on fusion and related properties. Replacement of Leu with hydrophilic amino acids strongly impaired (Thr) or abolished (Asp) fusion activity, whereas a Phe mutant still retained a significant degree of fusion activity. Liposome coflotation experiments showed that the fusion-negative Asp mutant did not form a stable interaction with membranes at low pH, although it was still capable of undergoing the structural rearrangements required for fusion. These data support the hypothesis that the cd loop may be directly involved in interactions with target membranes during fusion.  相似文献   

13.
Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E) mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.  相似文献   

14.
The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to produce the prefusion envelope glycoprotein trimer for biochemical and structural analysis. Through our studies of the GPC envelope glycoprotein of the hemorrhagic fever arenaviruses, we have shown that GPC is unique among class I viral fusion proteins in that the mature complex retains a stable signal peptide (SSP) in addition to the conventional receptor-binding and transmembrane fusion subunits. In this report we show that the recombinant GPC precursor can be produced as a discrete native-like trimer and that its proteolytic cleavage generates the mature glycoprotein. Proteoliposomes containing the cleaved GPC mediate pH-dependent membrane fusion, a characteristic feature of arenavirus entry. This reaction is inhibited by arenavirus-specific monoclonal antibodies and small-molecule fusion inhibitors. The in vitro reconstitution of GPC-mediated membrane-fusion activity offers unprecedented opportunities for biochemical and structural studies of arenavirus entry and its inhibition. To our knowledge, this report is the first to demonstrate functional reconstitution of membrane fusion by a viral envelope glycoprotein.  相似文献   

15.
Liao M  Kielian M 《Journal of virology》2006,80(19):9599-9607
The E1 envelope protein of the alphavirus Semliki Forest virus (SFV) is a class II fusion protein that mediates low pH-triggered membrane fusion during virus infection. Like other class I and class II fusion proteins, during fusion E1 inserts into the target membrane and rearranges to form a trimeric hairpin structure. The postfusion structures of the alphavirus and flavivirus fusion proteins suggest that the "stem" region connecting the fusion protein domain III to the transmembrane domain interacts along the trimer core during the low pH-induced conformational change. However, the location of the E1 stem in the SFV particle and its rearrangement and functional importance during fusion are not known. We developed site-directed polyclonal antibodies to the N- or C-terminal regions of the SFV E1 stem and used them to study the stem during fusion. The E1 stem was hidden on neutral pH virus but became accessible after low pH-triggered dissociation of the E2/E1 heterodimer. The stem packed onto the trimer core in the postfusion conformation and became inaccessible to antibody binding. Generation of the E1 homotrimer on fusion-incompetent membranes identified an intermediate conformation in which domain III had folded back but stem packing was incomplete. Our data suggest that E1 hairpin formation occurs by the sequential packing of domain III and the stem onto the trimer core and indicate a tight correlation between stem packing and membrane merger.  相似文献   

16.
Cells expressing the low pH-triggered class II viral fusion protein E1 of Semliki Forest virus (SFV) were fused to target cells. Fusion was monitored by electrical capacitance and aqueous dye measurements. Electrical voltage-clamp measurements showed that SFV E1-induced cell-cell fusion occurred quickly after acidification for a trans-negative potential across the target membrane (i.e., negative potential inside the target cell) but that a trans-positive potential eliminated all fusion. Use of an ionophore to control potentials for a large population of cells confirmed the dependence of fusion on voltage polarity. In contrast, fusion induced by the class I fusion proteins of human immunodeficiency virus, avian sarcoma leukosis virus, and influenza virus was independent of the voltage polarity across the target cell. Initial pore size and pore growth were also independent of voltage polarity for the class I proteins. An intermediate of SFV E1-induced fusion was created by transient acidification at low temperature. Membranes were hemifused at this intermediate state, and raising the temperature at neutral pH allowed full fusion to occur. Capacitance measurements showed that maintaining a trans-positive potential definitely blocked fusion at steps following the creation of the hemifusion intermediate and may have inhibited fusion at prior steps. It is proposed that the trans-negative voltage across the endosomal membrane facilitates fusion after low-pH-induced conformational changes of SFV E1 have occurred.  相似文献   

17.
The human T-cell leukemia virus transmembrane glycoprotein (TM) is a typical class 1 membrane fusion protein and a subunit of the viral envelope glycoprotein complex. Following activation, the TM undergoes conformational transitions from a native nonfusogenic state to a fusion-active pre-hairpin intermediate that subsequently resolves to a compact trimer-of-hairpins or six-helix bundle. Disruption of these structural transitions inhibits membrane fusion and viral entry and validates TM as an anti-viral and vaccine target. To investigate the immunological properties of fusion-active TM, we have generated a panel of monoclonal antibodies that recognize the coiled-coil domain of the pre-hairpin intermediate. Antibody reactivity is highly sensitive to the conformation of the coiled coil as binding is dramatically reduced or lost on denatured antigen. Moreover, a unique group of antibodies are 100-1000-fold more reactive with the coiled coil than the trimer-of-hairpins form of TM. The antibodies recognize virally expressed envelope, and significantly, some selectively bind to envelope only under conditions that promote membrane fusion. Most importantly, many of the antibodies potently block six-helix bundle formation in vitro. Nevertheless, viral envelope was remarkably resistant to neutralization by antibodies directed to the coiled coil. The data imply that the coiled coil of viral envelope is poorly exposed to antibody during membrane fusion. We suggest that resistance to neutralization by antibodies directed to fusion-associated structures is a common property of retroviral TM and perhaps of other viral class I fusion proteins. These observations have significant implications for vaccine design.  相似文献   

18.
Entry of vesicular stomatitis virus (VSV), the prototype member of the rhabdovirus family, occurs by receptor-mediated endocytosis. Subsequently, during traversal through the endosomal compartments, the VSV G protein acquires a low-pH-induced fusion-competent form, allowing for fusion of the viral membrane with endosomal and lysosomal membranes. This fusion event releases genomic RNA into the cytoplasm of the cell. Here we provide evidence that the VSV G protein acquires a fusion-competent form during exocytosis in a polarized endometrial cell line, HEC-1A. VSV infection of HEC-1A cells results in high viral yields and giant cell formation. Syncytium formation is blocked in a concentration-dependent manner by treatment with the lysosomotropic weak base ammonium chloride, which raises intravesicular pH. Virus release is somewhat delayed by treatment with ammonium chloride, but virus yields gradually reach those of control cells. In addition, inhibition of vacuolar H(+)-ATPases by treatment with bafilomycin A1 also inhibited cell to cell fusion without altering virus yields. Virions released from infected HEC cells were themselves not fusion competent, since viral entry required an active H(+)-ATPase and a low-pH-induced conformational change in the viral G protein. Thus, the conformation change leading to fusion competence during exocytotic transport is reversible and reverts during or after release of the virion from the infected cell.  相似文献   

19.
The glycoprotein of vesicular stomatitis virus (VSV G) mediates fusion of the viral envelope with the host cell, with the conformational changes that mediate VSV G fusion activation occurring in a reversible, low pH-dependent manner. Based on its novel structure, VSV G has been classified as class III viral fusion protein, having a predicted bipartite fusion domain comprising residues Trp-72, Tyr-73, Tyr-116, and Ala-117 that interacts with the host cell membrane to initiate the fusion reaction. Here, we carried out a systematic mutagenesis study of the predicted VSV G fusion loops, to investigate the functional role of the fusion domain. Using assays of low pH-induced cell-cell fusion and infection studies of mutant VSV G incorporated into viral particles, we show a fundamental role for the bipartite fusion domain. We show that Trp-72 is a critical residue for VSV G-mediated membrane fusion. Trp-72 could only tolerate mutation to a phenylalanine residue, which allowed only limited fusion. Tyr-73 and Tyr-116 could be mutated to other aromatic residues without major effect but could not tolerate any other substitution. Ala-117 was a less critical residue, with only charged residues unable to allow fusion activation. These data represent a functional analysis of predicted bipartite fusion loops of VSV G, a founder member of the class III family of viral fusion proteins.  相似文献   

20.
Flaviviruses include many significant human pathogens, comprising dengue, West Nile, Yellow fever, Japanese encephalitis, Zika and tick-borne encephalitis viruses and many others, affecting millions of people in the world. These viruses have produced important epidemics in the past, they continue to do it and they will undoubtedly continue to do so in the future. Flaviviruses enter into the cells via receptor-mediated endocytosis by fusing its membrane with the endosomal membrane in a pH-dependent manner with the help of the envelope E protein, a prototypical class II membrane fusion protein. The envelope E protein has a conserved fusion peptide at its distal end, which is responsible in the first instance of inserting the protein into the host membrane. Since the participation of other segments of the E protein in the fusion process should not be ruled out, we have used atomistic molecular dynamics to study the binding of the distal end of domain II of the envelope E protein from Dengue virus (DENV) with a complex membrane similar to the late-endosome one. Our work shows that not only the fusion peptide participates directly in the fusion, but also two other sequences of the protein, next to the fusion peptide it in the three-dimensional structure, are jointly wrapped in the fusion process. Overall, these three sequences represent a new target that would make it possible to obtain effective antivirals against DENV in particular and Flaviviruses in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号