首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice that lack IL-15 or the IL-15R alpha-chain (IL-15Ralpha) are deficient in peripheral CD8(+), but not in CD4(+), T cells. This CD8(+) T cell-specific deficiency has now been investigated further by characterization of a new strain of IL-15Ralpha(-/-) mice. The adult mutant mice exhibited a specific reduction in the percentage of CD8-single positive TCR(high) thymocytes. The expression of Bcl-2 was reduced in both CD8(+) thymocytes and naive T cells of the mutant animals, and the susceptibility of these cells to death was increased. Memory CD8(+) cells were profoundly deficient in IL-15Ralpha(-/-)mice, and the residual memory-like CD8(+) cells contained a high percentage of dead cells and failed to up-regulate Bcl-2 expression compared with naive CD8(+) cells. Moreover, exogenous IL-15 both up-regulated the level of Bcl-2 in and reduced the death rate of wild-type and mutant CD8(+) T cells activated in vitro. These results indicate that IL-15 and IL-15Ralpha regulate the expression of Bcl-2 in CD8(+) T cells at all developmental stages. The reduced Bcl-2 content in CD8(+) cells might result in survival defect and contribute to the reduction of CD8(+) cells in IL-15Ralpha(-/-)mice.  相似文献   

2.
3.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

4.
5.
Phenotypic changes in CD4(+) T cells undergoing antigen-dependent activation were compared in vivo and in vitro. The most obvious difference was in expression of CD25, the alpha chain of the high affinity receptor for IL-2. High level expression of CD25 in vivo is restricted to a small fraction of the cells at the leading edge of the cell division profile, whereas all activated cells express high levels of CD25 in cultures responding to antigen. Because IL-2 is known to upregulate expression of CD25 in preactivated T cells, this suggests a difference in IL-2 exposure in the two responses. A number of other markers, including CD54, show a similar difference in the pattern of expression in vivo and in vitro. Using 6-colour flow cytometry, it was demonstrated that the small percentage of cells expressing CD25 in vivo coexpresses a very high level of a number of other activation markers, including CD38, CD44 and Ly-6A/E, suggesting that these may also be upregulated by autocrine IL-2.  相似文献   

6.
The human thymus exports newly generated T cells to the periphery. As no markers have been identified for these recent thymic emigrants (RTE), it is presently impossible to measure human thymic output. T cell receptor excision circles (TREC) have been recently used to assess thymic output during both health and disease. Using a mathematical model, we quantify age-dependent changes both in the number of RTE generated per day and in TREC concentration during an 80-year lifespan. Through analyses, we demonstrate that RTE and peripheral T cell division have the same potential to affect TREC concentration at any age in healthy people. T cell death also influences TREC concentration, but to a lesser extent. During aging, our results indicate that thymic involution primarily induces an age-dependent decline in TREC concentrations within both CD4(+) and CD8(+) T cell populations. We further apply this model for studying TREC concentration during HIV-1 infection. Our analyses reveal that a decrease in thymic output is the major contributor to the decline in TREC concentration within CD4(+) T cells, whereas both increased peripheral T cell division and decreased thymic output induce the decline in TREC concentration within CD8(+) T cells. Therefore, we suggest that T cell turnover should be examined together with TREC concentration as a measure of RTE. If peripheral T cell division remains relatively unchanged, then TREC concentration indeed reflects thymic output.  相似文献   

7.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

8.
Anergy and suppression are cardinal features of CD4(+)CD25(+)Foxp3(+) T cells (T regulatory cells (Treg)) which have been shown to be tightly controlled by the maturation state of dendritic cells (DC). However, whether lymphoid organ DC subsets exhibit different capacities to control Treg is unclear. In this study, we have analyzed, in the rat, the role of splenic CD4(+) and CD4(-) conventional DC and plasmacytoid DC (pDC) in allogeneic Treg proliferation and suppression in vitro. As expected, in the absence of exogenous IL-2, Treg did not expand in response to immature DC. Upon TLR-induced maturation, all DC became potent stimulators of CD4(+)CD25(-) T cells, whereas only TLR7- or TLR9-matured pDC induced strong proliferation of CD4(+)CD25(+)Foxp3(+) T cells in the absence of exogenous IL-2. This capacity of pDC to reverse Treg anergy required cell contact and was partially CD86 dependent and IL-2 independent. In suppression assays, Treg strongly suppressed proliferation and IL-2 and IFN-gamma production by CD4(+)CD25(-) T cells induced by mature CD4(+) and CD4(-) DC. In contrast, upon stimulation by mature pDC, proliferating Treg suppressed IL-2 production by CD25(-) cells but not their proliferation or IFN-gamma production. Taken together, these results suggest that anergy and the suppressive function of Treg are differentially controlled by DC subsets.  相似文献   

9.
The fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell division. We derive in analytic form the number of cells in each division class as a function of time based on the distribution of times to the first division. Choosing the distribution of time to the first division to fit thymidine labeling data for T cells stimulated in vitro under different concentrations of IL-2, we fit CFSE data to determine the dependence of T cell kinetic parameters on the concentration of IL-2. As the concentration of IL-2 increases, the average cell cycle time is shortened, the death rate of cells is decreased, and a higher fraction of cells is recruited into division. We also find that if the average cell cycle time increases with division class then the qualify of our fit to the data improves.  相似文献   

10.
Older humans and mice frequently contain very large clones of CD8(+) T cells. In mice these cells are phenotypically very similar to memory CD8(+) T cells. Like memory CD8(+) T cells, most members of the clones are in continuous slow division, apparently independently of Ag stimulation. Proliferation of the CD8(+) clonal T cells is inhibited in mice treated with Ab to the IL-2R beta-chain that blocks signaling by either IL-2 or IL-15. However, inhibition of IL-2 increases the numbers of dividing clonal cells. Therefore, like normal memory CD8(+) T cells, expansion of the clones is driven by IL-15 and inhibited by IL-2 and is probably limited by the amounts of IL-15 and IL-2 present in the host. Control by these two cytokines may account for the fact that, although the clones can be very large, they do not overwhelm or kill their hosts. Nevertheless the clonal cells compete successfully with normal memory CD8(+) T cells for growth. Perhaps the clonal cells use IL-15 more effectively or are more resistant to the inhibitory effects of IL-2. Thus they might affect the immune response of their hosts by competing for factors that stimulate and inhibit normal CD8(+) memory T cells.  相似文献   

11.
Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  相似文献   

12.
We show that the lymphoid hyperplasia observed in IL-2Ralpha- and IL-2-deficient mice is due to the lack of a population of regulatory cells essential for CD4 T cell homeostasis. In chimeras reconstituted with bone marrow cells from IL-2Ralpha-deficient donors, restitution of a population of CD25(+)CD4(+) T cells prevents the chaotic accumulation of lymphoid cells, and rescues the mice from autoimmune disease and death. The reintroduction of IL-2-producing cells in IL-2-deficient chimeras establishes a population of CD25(+)CD4(+) T cells, and restores the peripheral lymphoid compartments to normal. The CD25(+)CD4(+) T cells regulated selectively the number of naive CD4(+) T cells transferred into T cell-deficient hosts. The CD25(+)CD4(+)/naive CD4 T cell ratio and the sequence of cell transfer determines the homeostatic plateau of CD4(+) T cells. Overall, our findings demonstrate that IL-2Ralpha is an absolute requirement for the development of the regulatory CD25(+)CD4(+) T cells that control peripheral CD4 T cell homeostasis, while IL-2 is required for establishing a sizeable population of these cells in the peripheral pools.  相似文献   

13.
14.
We propose a quantitative method to characterize growth and differentiation dynamics of multipotent cells from time series carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE) division tracking data. The dynamics of cell proliferation and differentiation was measured by combining (CFDA-SE) division tracking with phenotypic analysis. We define division tracking population statistics such as precursor cell frequency, generation time and renewal rate that characterize growth of various phenotypes in a heterogeneous culture system. This method is illustrated by study of the divisional recruitment of cord blood CD34(+) cells by hematopoietic growth factors. The technical issue of assigning the correct generation number to cells was addressed by employing high-resolution division tracking methodology and daily histogram analysis. We also quantified division-tracking artifacts such as CFDA-SE degeneration and cellular auto-fluorescence. Mitotic activation of cord blood CD34(+) cells by cytokines commenced after 2 days of cytokine stimulation. Mean generation number increased linearly thereafter, and it was conclusively shown that CD34(+) cells cycle slower than CD34(-) cells. Generation times for CD34(+) and CD34(-) cells were 24.7 +/- 0.8 h and 15.1 +/- 0.9 h (+/-SD, n = 5), respectively. The 20-fold increase in CD34(+) cell numbers at Day 6 could be attributed to a high CD34(+) cell renewal rate (91% +/- 2% per division). Although cultures were initiated with highly purified CD34(+) cells (approximately 96%), CD34(-) numbers had expanded rapidly by Day 6. This rapid expansion could be explained by their short generation time as well as a small fraction of CD34(+) cells (approximately 5%) that differentiated into CD34(-) cells. Multitype division tracking provides a detailed analysis of multipotent cell differentiation dynamics.  相似文献   

15.
Long- and short-term T cell lines form the backbone of many assays for T cell function and also represent important tools for use in human immunotherapy. Despite much study concerning the requirements for T cell activation and growth in culture there is relatively little information about the kinetics of proliferation and cell death in such cultures. Here we studied these parameters in a long-term CD8(+) T cell line using a tetrameric MHC reagent and the fluorescent dye CFSE. We observed proliferation of the T cells within 24 h of restimulation with antigen and IL-2 and the cells continued to divide once every 12 h on average. Interestingly, a proportion of cells entered apoptosis with each cell division, showing that a degree of programmed cell death occurred constantly in vitro, not merely at the end of the culture period when antigen or the necessary growth factors became limiting. This information should assist in the design of more efficient protocols for generating large numbers of specific T cells for clinical use.  相似文献   

16.
We have previously shown that regulatory CD25(+)CD4(+) T cells are resistant to clonal deletion induced by viral superantigen in vivo. In this work we report that isolated CD25(+)CD4(+) T cells activated in vitro by anti-CD3 Ab are resistant to Fas-induced apoptosis, in contrast to their CD25(-)CD4(+) counterparts. Resistance of CD25(+)CD4(+) T cells to Fas-dependent activation-induced cell death is not linked to their inability to produce IL-2 or to their ability to produce IL-10. The sensitivity of both populations to Fas-induced apoptosis can be modulated in vitro by changing the CD25(+)CD4(+):CD25(-)CD4(+) T cell ratio. The sensitivity of CD25(-)CD4(+) T cells to apoptosis can be reduced, while the sensitivity of CD25(+)CD4(+) T cells can be enhanced. Modulation of Fas-dependent apoptosis is associated with changes in cytokine production. However, while CD25(-)CD4(+) T cell apoptosis is highly dependent on IL-2 (production of which is inhibited by CD25(+)CD4(+) T cells in coculture), modulation of CD25(+)CD4(+) T cell apoptosis is IL-2 independent. Taken together, these results suggest that CD25(+)CD4(+) and CD25(-)CD4(+) T cell sensitivity to Fas-dependent apoptosis is dynamically modulated during immune responses; this modulation appears to help maintain a permanent population of regulatory T cells required to control effector T cells.  相似文献   

17.
CD4(+)CD28(null) T cells are oligoclonal lymphocytes rarely found in healthy individuals younger than 40 yr, but are found in high frequencies in elderly individuals and in patients with chronic inflammatory diseases. Contrary to paradigm, they are functionally active and persist over many years. Such clonogenic potential and longevity suggest altered responses to apoptosis-inducing signals. In this study, we show that CD4(+)CD28(null) T cells are protected from undergoing activation-induced cell death. Whereas CD28(+) T cells underwent Fas-mediated apoptosis upon cross-linking of CD3, CD28(null) T cells were highly resistant. CD28(null) T cells were found to progress through the cell cycle, and cells at all stages of the cell cycle were resistant to apoptosis, unlike their CD28(+) counterparts. Neither the activation-induced up-regulation of the IL-2R alpha-chain (CD25) nor the addition of exogenous IL-2 renders them susceptible to Fas-mediated apoptosis. These properties of CD28(null) T cells were related to high levels of Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein, an inhibitor of Fas signaling that is normally degraded in T cells following activation in the presence of IL-2. Consistent with previous data showing protection of CD28(null) cells from spontaneous cell death, the present studies unequivocally show dysregulation of apoptotic pathways in CD4(+)CD28(null) T cells that favor their clonal outgrowth and maintenance in vivo.  相似文献   

18.
IL-7 is vital for the development of the immune system and profoundly enhances the function of mature T cells. Chronic administration of IL-7 to mice markedly increases T cell numbers, especially CD8(+) T cells, and enhances T cell functional potential. However, the mechanism by which these effects occur remains unclear. This report demonstrates that only 2 days of IL-7 treatment is needed for maximal enhancement of T cell function, as measured by proliferation, with a 6- to 12-fold increase in the proportion of CD4(+) and CD8(+) T cells in cell cycle by 18 h of ex vivo stimulation. Moreover, a 2-day administration of IL-7 in vivo increases basal proliferation by 4- and 14-fold in CD4(+) and CD8(+) T cells, respectively. These effects occur in the absence of cytokine production, increases in most activation markers, and changes in memory markers. This enhanced basal proliferation is the basis for the increase in T cell numbers in that IL-7 induces an additional 60% and 85% of resting CD4(+) and CD8(+) T cells, respectively, to enter cell cycle in mice given IL-7 for 7 days. These results demonstrate that in vivo administration of IL-7 increases T cell numbers and functional potential via a homeostatic, nonactivating process. These findings may suggest a unique clinical niche for IL-7 in that IL-7 therapy may increase T cell numbers and enhance responses to specific antigenic targets while avoiding a general, nonspecific activation of the T cell population.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号