首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human lens proteins (HLP) become chemically modified by kynurenines and advanced glycation end products (AGEs) during aging and cataractogenesis. We investigated the effects of kynurenines on AGE synthesis in HLP. We found that incubation with 5 mM ribose or 5 mM ascorbate produced significant quantities of pentosidine, and this was further enhanced in the presence of two different kynurenines (200–500 µM): N-formylkynurenine (Nfk) and kynurenine (Kyn). Another related compound, 3-hydroxykynurenine (3OH-Kyn), had disparate effects; low concentrations (10–200 µM) promoted pentosidine synthesis, but high concentrations (200–500 µM) inhibited it. 3OH-Kyn showed similar effects on pentosidine synthesis from Amadori-enriched HLP or ribated lysine. Chelex-100 treatment of phosphate buffer reduced pentosidine synthesis from Amadori-enriched HLP by ∼ 90%, but it did not inhibit the stimulating effect of 3OH-Kyn and EDTA. 3OH-Kyn (100–500 μM) spontaneously produced copious amounts of H2O2 (10–25 μM), but externally added H2O2 had only a mild stimulating effect on pentosidine but had no effect on Nε-carboxymethyl lysine (CML) synthesis in HLP from ribose and ascorbate. Further, human lens epithelial cells incubated with ribose and 3OH-Kyn showed higher intracellular pentosidine than cells incubated with ribose alone. CML synthesis from glycating agents was inhibited 30 to 50% by 3OH-Kyn at concentrations of 100–500 μM. Argpyrimidine synthesis from 5 mM methylglyoxal was slightly inhibited by all kynurenines at concentrations of 100–500 μM. These results suggest that AGE synthesis in HLP is modulated by kynurenines, and such effects indicate a mode of interplay between kynurenines and carbohydrates important for AGE formation during lens aging and cataract formation.  相似文献   

2.
Dopamine is produced first by hydroxylalation of l-tyrosine to l-dihydroxyphenylalanine (l-dopa) and subsequently by the decarboxylation of l-dopa to dopamine catalysed by the enzymes tyrosine hydroxylase and aromatic l-amino acid decarboxylase (AADC) respectively. Reduced glutathione (GSH) acts as a major cellular antioxidant. We have investigated the role of dopamine in the control of GSH homeostasis in brain cells. The SH-SY5Y human neuroblastoma cell line was found to increase intracellular GSH levels in response to 50 μM dopamine treatment. Similarly the 1321N1 human astrocytoma cell line was found to increase GSH release in response to 50 μM dopamine. The same concentration of l-dopa was also found to increase intracellular GSH in SH-SY5Y cells, however when AADC was inhibited this affect was abolished. Furthermore 1321N1 cells which were found to have almost undetectable levels of AADC activity did not increase GSH release in response to 50 μM l-dopa. These results suggest that at these concentrations dopamine has the potential to act as a signal for the upregulation of GSH synthesis within neuronal-like cells and for the increased trafficking of GSH from astrocytes to neurons. This effect could potentially relate to the activation of antioxidant response elements leading to the induction of phase II detoxifying enzymes including those involved in GSH synthesis and release. The inability of l-dopa to produce a similar effect when AADC was inhibited or when AADC activity was absent indicates that these effects are relatively specific to dopamine. Additionally dopamine but not l-dopa treatment led in an increase in complex I activity of the respiratory chain in SH-SY5Y cells which may be related to the effect of dopamine on GSH levels.  相似文献   

3.
2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki = 250 μM (95% CI: 106–405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM = 112 μM (95% CI: 28–195 μM). The kinetic scheme consistent with this experimental data is proposed.  相似文献   

4.
5.
Polyphenol oxidase of avocado mesocarp catalyses (a) the orthohydroxylation of monophenols like l-tyrosine, d-tyrosine, tyramine and p-cresol, and (b) the oxidation of the corresponding o-dihydroxyphenols to quinones. The rate of step b is much greater than that of step a. The hydroxylation of monophenols occurs after a lag period. DOPA or ascorbate effectively eliminate the lag but not dl-6-methyltetrahydropteridine or tetrahydrofolic acid. At 1.66 × 10?4 M, α,α-dipyridyl has no effect, while diethyldithiocarbamate at this concentration inhibits the hydroxylation reaction by 90%. The tyrosinase activity of avocado polyphenol oxidase is inactivated in the course of the reaction; this inactivation occurs faster and is more pronounced in the presence of exogenously added DOPA. This inactivation is partially prevented by a large excess of ascorbate. The Km values indicate that tyramine, dopamine, p-cresol and 4-methyl catechol are better substrates for avocado polyphenol oxidase than tyrosine or DOPA.  相似文献   

6.
Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40–200 μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220 μM CaCl2, cyclosporine A protected against permeability transition induced by 40 μM, but not 80 μM lysophosphatidylcholine. Incubation with 40–120 μM lysophosphatidylcholine also increased mitochondrial permeability to 75 μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80 μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30–50% at 100 μM lysophosphatidylcholine. Finally, while 40 μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100 μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.  相似文献   

7.
Prostaglandins are important regulators of reproductive function in fish. Analgesics like aspirin and ibuprofen are prostaglandin inhibitors and have been detected in freshwater systems at ng/L–μg/L levels. We investigated whether ibuprofen would affect prostaglandin and sex steroid hormone levels in adult zebrafish (Danio rerio) and if expression levels of genes involved in steroidogenesis and prostaglandin synthesis were affected. Zebrafish were exposed to moderate concentrations of ibuprofen (21, 201 or 506 μg/L) for 7 days in a semi-static test system. Ibuprofen concentrations were close to nominal levels and decreased by a maximum of 12–13% over 24 h. Prostaglandin E2 (PGE2) levels in whole body homogenates of males and ovaries of females decreased in a monotonic dose–response relationship whereas male 11-ketotestosterone levels and ovarian 17β-estradiol levels remained unchanged. Ibuprofen did not have an influence on vitellogenin levels, female gonadosomatic index or cumulative egg production and no dose–response relationship in ovarian and testicular expression levels of the investigated genes was observed. This study shows that ibuprofen reduces PGE2 levels in male and female zebrafish but has no consistent effects on other investigated reproductive parameters.  相似文献   

8.
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) and 34S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC–MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r2 > 0.99) over a range of concentrations (SAM 0.01–2.0 μM, SAH 0.002–0.10 μM, Met 0.05–4.0 μM, GSH 0.17–20.0 μM, GSSG 0.07–20.0 μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1 nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.  相似文献   

9.
Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke, and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.05 and >200 μM, respectively. Spike and recovery studies demonstrate an accuracy at low (0.5 μM), mid (5 μM), and high (100 μM) levels of 98.2, 97.3, and 101.6%, respectively. Additional assay performance metrics include intraday and interday coefficients of variance of <6.4 and <9.9%, respectively, across the range of TMAO levels. Stability studies reveal that TMAO in plasma is stable both during storage at −80 °C for 5 years and to multiple freeze thaw cycles. Fasting plasma normal range studies among apparently healthy subjects (n = 349) show a range of 0.73–126 μM, median (interquartile range) levels of 3.45 (2.25–5.79) μM, and increasing values with age. The LC/MS/MS-based assay reported should be of value for further studies evaluating TMAO as a risk marker and for examining the effect of dietary, pharmacologic, and environmental factors on TMAO levels.  相似文献   

10.
The transformable strain of Bacillus subtilis strain 168 is extremely susceptible to growth inhibition by d-tyrosine. The molecular events associated with the inhibition of growth by d-tyrosine in this strain include the false feedback inhibition and probably the false repression of prephenate dehydrogenase. These effects were found to contribute to the formation of d-tyrosine-containing proteins by decreasing the intracellular concentration of l-tyrosine. Accordingly, growth inhibition of strain 168 by the d isomer of tyrosine was shown to be progressive, enduring, and delayed by prior growth on l-tyrosine. The synthesis of cellular macromolecules and viable cell count were progressively diminished in d-tyrosine-inhibited cultures. Several different enzyme activities were reduced after growth in the presence of d-tyrosine. Isotopic d-tyrosine was incorporated into cellular proteins without change of optical configuration. Long chains of cells with completed septa were observed microscopically, and therefore some cell wall effect may also be implicated.  相似文献   

11.
DOPA synthesis from phenylalanine was studied in PC12 cells incubated with m-hydroxybenzylhydrazine, to inhibit aromatic L-amino acid decarboxylase. DOPA synthesis rose with increasing concentrations of either phenylalanine or tyrosine; maximal rates (~55 pmol/min/mg protein for tyrosine; ~40 pmol/min/mg protein for phenylalanine) occurred at a medium concentration of ~10 M for either amino acid. The Km for either amino acid was about 1 M (medium concentration). At tyrosine concentrations above 30 M, DOPA synthesis declined; inhibition was observed at higher concentrations for phenylalanine (300 M). These effects were most notable in the presence of 56 mM potassium. Measurements of intracellular phenylalanine and tyrosine suggested the Km for either amino acid is 20–30 M; maximal synthesis occurred at 120–140 M. In the presence of both phenylalanine and tyrosine, DOPA synthesis was inhibited by phenylalanine only at a high medium concentration (1000 M), regardless of medium tyrosine concentration. The inhibition of DOPA synthesis by high medium tyrosine concentrations was antagonized by high medium phenylalanine concentrations (100, 1000 M). Together, the findings indicate that for PC12 cells, phenylalanine can be a significant substrate for tyrosine hydroxylase, is a relatively weak inhibitor of the enzyme, and at high concentrations can antagonize substrate inhibition by tyrosine.  相似文献   

12.
This paper presents the development of a simple liquid chromatography–tandem mass spectrometry (LC–MS/MS) method to determine corticosteroids in bovine urine sample matrices. This method uses a single phase extraction (SPE) for cleaning of the sample with an Oasis MAX cartridge at pH 9.0–9.5 and elution by a neutral organic solvent (acetonitrile/dichloromethane), followed by separation on a GEMINI C18 column in the gradient mode with acetate buffer (pH 4.1)/methanol. A triple quadrupole mass spectrometer equipped with a multimode ion source, set to negative atmospheric pressure chemical ionization (APCI) in the multiple reaction monitoring mode was used for detection. The main advantage of this method over other commonly used methods includes the use of SPE with a low volume cartridge for sample preparation and no ion suppression effects from matrix components of the urine samples in the LC–MS/MS analysis. This allowed a reduction the quantification limits (decision limits, CCα) for the first time to 0.1 μg/L (1 and 0.2 μg/L for triamcinolone and flumethasone, respectively). The developed method was validated in accordance with the European Union Commission Decision 2002/657 EC. The recoveries and within-laboratory reproducibility varied from 77% to 115% and 87% to 107.5%, respectively, at 2, 3, and 4 μg/L levels of corticosteroids. The relative standard deviation (RSD) of the measurements was lower than 30%. The decision limit was calculated by multiplying the signal-to-noise ratio by 3 and the obtained values were in the range of 0.1–1.0 μg/L, confirmed by the analysis of twenty blank samples, which were spiked at the desired concentrations. The detection capability was calculated by the addition of the decision limit and the standard deviation followed by multiplication by 1.64 of the within-laboratory reproducibility at 2 μg/L of corticosteroids. The method was applied to four urine samples, giving concentrations of prednisolone (PRED) residues in the range from 0.3 to 0.9 μg/L.  相似文献   

13.
Enzyme immunosorbent assays were used to measure cyclic nucleotide concentrations in homogenates of salivary glands from partially fed female Dermacentor variabilis. The adenylyl cyclase activator forskolin (100 μM) increased homogenate cGMP concentrations greater than three-fold over controls. Competitive inhibition of nitric oxide synthase with 1 mM l-NMMA, an l-arginine analog, demonstrated that crosstalk occurs downstream of nitric oxide synthesis. Forskolin-stimulated synthesis of cGMP was diminished 58% by the soluble guanylyl cyclase inhibitor ODQ (2 μM). The protein kinase A selective inhibitor Rp-cAMPS (50 μM) inhibited forskolin-stimulated cGMP by 49%. Whole glands treated with 10 μM dopamine increased cGMP levels two-fold in the presence of 1 mM IBMX. Treatment of whole salivary glands with equimolar concentrations of 8-Br-cAMP and 8-Br-cGMP produced no greater fluid uptake than in glands treated with 8-Br-cGMP alone, suggesting that cAMP and cGMP share a downstream target. The protein kinase G-selective inhibitor Rp-8-pCPT-cGMPS (100 μM) impeded 10 mM 8-Bromo-cGMP-stimulated gland weight increases. Pretreatment with verapamil, a Ca2+ channel blocker, attenuated cyclic nucleotide-stimulated fluid uptake indicating that whole gland fluid changes are dependent on extracellular Ca2+. Together, our data suggest that cGMP production is mediated in part by cAMP-dependent activation of soluble guanylyl cyclase. Experiments measuring changes in whole salivary gland weight support the hypothesis that cAMP and cGMP signaling cascades have a common target and that cyclic nucleotide-stimulated fluid movement is dependent on Ca2+ influx.  相似文献   

14.
During cryopreservation, oxidative stress exerts physical and chemical changes on sperm functionality. In the present study we investigated the antioxidant effect of rosmarinic acid (RA) on quality and fertilising ability of frozen–thawed boar spermatozoa. Ejaculates collected from mature boar were cryopreserved in lactose–egg yolk buffer supplemented with different concentrations of RA (0 μM, 26.25 μM, 52.5 μM and 105 μM). Motion parameters, acrosome and plasma membrane integrity, lipoperoxidation levels, DNA oxidative damage (8-hydroxy-2-deoxyguanosine base lesion) and in vitro fertilisation ability were evaluated. Total and progressive motility were significantly higher in experimental extenders with RA than in the control (P < 0.05) at 0 and 120 min post-thawing. The plasma and acrosomal membrane integrity were improved by supplementation with 105 μM RA (P < 0.05). Negative correlation between RA and malondialdehyde (MDA) concentration were determined (P < 0.05). After thawing, the percentage of spermatozoa with oxidised DNA did not differ between extenders, however, at 120 and 240 min post-thawing, the samples supplemented with 105 μM RA showed the lowest DNA oxidation rate (P < 0.05). The penetration rate was significantly higher on spermatozoa cryopreserved with 105 μM RA (P < 0.05). The results suggest that RA provides a protection for boar spermatozoa against oxidative stress during cryopreservation by their antioxidant properties.  相似文献   

15.
This work aims at evaluating the accumulation of cadmium (Cd) and zinc (Zn) (trace elements) in the organs of young tomato plants (Lycopersicon esculentum L. var. Rio Grande) and their effects on the rate of chlorophyll and enzyme activities involved in the antioxidant system: catalase (CAT), glutathion-S-transferase (GST) and peroxysase ascorbate (APX). Plants previously grown on a basic nutrient solution were undergoing treatment for 7 days, either by increasing concentrations of CdCl2 or ZnSO4 (0, 50, 100, 250, 500 μM) or by the combined concentrations of Cd and Zn (100/50, 100/100, 100/250, 100/500 μM). The results concerning the determination of metals in the various compartments of tomato plants as a function of increasing concentrations of Cd or Zn, suggest a greater accumulation of Cd and Zn in the roots compared to leaves. The combined treatment (Cd/Zn) interferes with the absorption of the two elements according to their concentrations in the culture medium. The presence of Zn at low concentrations (50 μM of Zn/100 μM Cd) has little influence on the accumulation of Cd in the roots and leaves, while the absorption of these two elements in the leaves increases and decreases in roots when their concentrations are equivalent (100/100 μM) compared to treatment alone. When the concentration of Zn is higher than that of Cd (500 μM of Zn/100 μM Cd) absorption of the latter is inhibited in the roots while increasing their translocation to the leaves. Meanwhile, the dosage of chlorophylls shows that they tend to decrease in a dose-dependent for both treatments (Cd or Cd/Zn), however, treatment with low concentrations of Zn (50 and 100 μM) stimulates chlorophyll synthesis. However, treatment with different concentrations of Cd seems to induce the activity of the enzymes studied (CAT, APX, GST). It is the same for treatment with different concentrations of Zn and this particularly for the highest concentrations. Finally, the combined treatment (Zn/Cd) also appears to cause enzyme inductions: CAT, APX and GST.  相似文献   

16.
A capillary electrophoresis method was developed and validated for the first time for the analysis of clopidogrel and its carboxylic acid metabolite. Prior to method optimization, the pH dependence of effective mobility of both compounds was determined in order to define the initial pH of the running buffer. The optimized method demonstrated to be selective, and linear in the concentration range of 2–100 μM for both compounds. The method limits of detection and quantification were, respectively, 1.2 and 3.7 μM for clopidogrel and 1.1 and 3.2 μM for the carboxylic acid metabolite. Moreover, method validation demonstrated acceptable results for method repeatability (RSD < 7%), intermediate precision (RSD < 7%) and accuracy (85–96%) and is suitable for the quantitative analysis of clopidogrel and its metabolite in serum samples. The validated method was also applied to the determination of the kinetic parameters of the enzymatic hydrolysis of clopidogrel. An apparent Km of 145 ± 30 μM and Vmax of 0.4, 1.5 and 3.4 μM/min, respectively for the enzyme concentrations 1.0, 2.0 and 4.0 U/ml, were obtained.  相似文献   

17.
A rapid, inexpensive, sensitive and specific HPLC-ECD method for the determination of lipoic acid in human plasma was developed and validated over the linearity range of 0.001–10 μg/ml using naproxen sodium as an internal standard (IS). Extraction of lipoic acid and IS from plasma (250 μl) was carried out with a simple one step liquid–liquid extraction using dichloromethane. Similarly solid-phase extraction was carried out using dichloromethane as extraction solvent. The separated organic layer was dried under the stream of nitrogen at 40 °C and the residue was reconstituted with the mobile phase. Complete separation of both lipoic acid and IS at 30 °C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 6 min using 0.05 M phosphate buffer (pH 2.5 adjusted with phosphoric acid):acetonitrile (50:50, v/v) as a mobile phase pumped at the rate of 1.5 ml/min using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification of lipoic acid were 200 pg/ml and 1 ng/ml, respectively. While on column limit of detection and limit of quantification of lipoic acid were 10 and 50 pg/ml, respectively. The absolute recoveries of lipoic acid with liquid–liquid and solid-phase extraction were 98.43, 95.65, 101.45, and 97.36, 102.73, 100.17% at 0.5, 1 and 5 μg/ml levels, respectively. Coefficient of variations for both intra-day and inter-day were between 0.28 and 4.97%. The method is validated and will be quite suitable for the analysis of lipoic acid in the plasma of human volunteers as well as patients with diabetes and cardiovascular diseases.  相似文献   

18.
Radioactive shikimic acid and l-tyrosine were shown to be efficient precursors of 3,4-dihydroxyphenylalanine (DOPA) in Vicia faba. [1-14C]Acetate and l[U-14C]phenylalanine were not incorporated into tyrosine or DOPA. Thus the synthesis of DOPA occurs via the shikimic acid pathway and tyrosine or a very closely related metabolise. Phenolase was present in etiolated plants in much larger quantities after a brief light exposure whereas DOPA concentration was relatively constant during all stages of plant growth. Partially purified phenolase did not catalyze the conversion of tyrosine to DOPA and does not appear to have a role in DOPA synthesis.  相似文献   

19.
Excessive glucocorticoid levels in depressed patients have been associated with atrophic changes in some brain regions, but only few studies suggest that some antidepressants can interfere with deleterious effect of glucocorticoids on neuronal cells. The aim of the present study was to examine the effect of dexamethasone (DEX), a synthetic glucocorticoid and some antidepressants from different chemical groups (imipramine, desipramine, amitriptyline, citalopram, fluoxetine, reboxetine and tianeptine) on SH-SY5Y cells cultured in the medium containing steroid-free serum. DEX in concentrations from 1 to 100 μM did not change LDH release but exposure to 10 μM and 100 μM DEX for 24, 48 and 72 h caused a significant reduction in cell viability and proliferation as confirmed by MTT reduction and BrdU ELISA assays, respectively. Twenty four-hour incubation of cells with antidepressants (0.05–10 μM) and DEX (10 μM) showed that imipramine, amitriptyline, desipramine, citalopram and fluoxetine at concentrations from 0.1 up to 1 μM, reboxetine (0.1 μM) and tianeptine (0.05 μM) prevented the DEX-induced decreases in cell viability and proliferation rate. The protective effects of antidepressants were ameliorated by inhibitors of MAPK/ERK1/2, but not PI3-K/Akt pathway as shown for imipramine, fluoxetine and reboxetine. Moreover, Western blot analysis showed the decrease in the activated form of ERK1/2 (p-ERK) after DEX treatment and this effect was inhibited by imipramine. Thus, the reduction in SH-SY5Y cell viability caused by DEX appears to be related to its antiproliferative activity and some antidepressant drugs in low concentrations attenuate this effect by mechanism which involves the activation of MAPK/ERK1/2 pathway.  相似文献   

20.
This study reports a sensitive analytical method suitable for the quantitative analysis of ethylenethiourea (ETU) in human urine and its application to samples from the general population. Sample preparation involved the use of diatomaceous earth extraction columns to remove matrix interferences. Quantification was achieved by liquid chromatography–mass spectrometry using positive ion atmospheric pressure chemical ionisation. Within-day and between-day variability of 14% (n = 10) and 11% (n = 6), respectively, were obtained at 98 nmol/l (10 μg l−1). The assay was linear over the investigated range 2.5–245 nmol/l, with a limit of detection of 2.5 nmol/l. The method was applied to monitoring background levels of ETU in urine samples from the general population in the UK. Results obtained from 361 spot samples contained ETU levels ranging from less than the detection limit (54% of samples) to a maximum of 15.8 μmol/mol creatinine (14.3 μg/g creatinine). The 95th percentile was 5.7 μmol/mol creatinine (5.2 μg/g creatinine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号