首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction.  相似文献   

2.
In the nervous system, protease-activated receptors (PARs), which are activated by thrombin and other extracellular proteases, are expressed widely at both neuronal and glial levels and have been shown to be involved in several brain pathologies. As far as the glial receptors are concerned, previous experiments performed in rat hippocampus showed that expression of PAR-1, the prototypic member of the PAR family, increased in astrocytes both in vivo and in vitro following treatment with trimethyltin (TMT). TMT is an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. In the present experiments, the authors extended their investigation to microglial cells. In particular, by 7 days following TMT intoxication in vivo, confocal immunofluorescence revealed an evident PAR-1-related specific immunoreactivity in OX-42-positive microglial cells of the CA3 and hilus hippocampal regions. In line with the in vivo results, when primary rat microglial cells were treated in vitro with TMT, a strong upregulation of PAR-1 was observed by immunocytochemistry and Western blot analysis. These data provide further evidence that PAR-1 may be involved in microglial response to brain damage.  相似文献   

3.
The glucose-dependent insulinotropic peptide receptor (GIPR) has been implicated with neuroplasticity and may be related to epilepsy. GIPR expression was analyzed by immunohistochemistry in the hippocampus (HIP) and neocortex (Cx) of rats undergoing pilocarpine induced status epilepticus (Pilo-SE), and in three young male patients with left mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) treated surgically. A combined GIPR immunohistochemistry and Fluoro-Jade staining was carried out to investigate the association between the GIPR expression and neuronal degeneration induced by Pilo-SE. GIPR was expressed in the cytoplasm of neurons from the HIP CA subfields, dentate gyrus (DG) and Cx of animals and human samples. The GIPR expression after the Pilo-SE induction increases significantly in the HIP after 1 h and 5 days, but not after 12 h or 50 days. In the Cx, the GIPR expression increases after 1 h, 12 h and 5 days, but not 50 days after the Pilo-SE. The expression of GIPR 12 h after Pilo-SE was inversely proportional to the Fluoro-Jade staining intensity. In the human tissue, GIPR expression patterns were similar to those observed in chronic Pilo-SE animals. No Fluoro-Jade stained cells were observed in the human sample. GIPR is expressed in human HIP and Cx. There was a time and region dependent increase of GIPR expression in the HIP and Cx after Pilo-SE that was inversely associated to neuronal degeneration.  相似文献   

4.
Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP+ve/nestin+ve radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP−ve/nestin+ve Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP+ve/nestin+ve/BrdU+ve) and Type-1b (GFAP+ve/nestin+ve/BrdU−ve). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP−ve/nestin+ve/BrdU+ve) progenitors were few compared to Type-1. Type-3 (DCX+ve) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.  相似文献   

5.
Kainic acid (KA) induces hippocampal cell death and astrocyte proliferation. There are reports that sphingosine kinase (SPHK)1 and sphingosine-1- phosphate (S1P) receptor 1 (S1P1) signaling axis controls astrocyte proliferation. Here we examined the temporal changes of SPHK1/S1P1 in mouse hippocampus during KA-induced hippocampal cell death. Mice were killed at 2, 6, 24, or 48 h after KA (30 mg/kg) injection. There was an increase in Fluoro-Jade B-positive cells in the hippocampus of KA-treated mice with temporal changes of glial fibrillary acidic protein (GFAP) expression. The lowest level of SPHK1 protein expression was found 2 h after KA treatment. Six hours after KA treatment, the expression of SPHK1 and S1P1 proteins steadily increased in the hippocampus. In immunohistochemical analysis, SPHK1 and S1P1 are more immunoreactive in astrocytes within the hippocampus of KA-treated mice than in hippocampus of control mice. These results indicate that SPHK1/S1P1 signaling axis may play an important role in astrocytes proliferation during KA-induced excitotoxicity.  相似文献   

6.
The present study evaluated the expressional levels of synaptic vesicle protein 2A (SV2A) and other secretary machinery proteins (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, Munc18-1, N-ethylmaleimide-sensitive factor (NSF) and soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP)) in a pentylenetetrazole (PTZ) kindling model. Repeated administration of sub-convulsive PTZ (40 mg/kg, i.p.) progressively increased seizure susceptibility in mice and consistently induced clonic seizures in most animals tested at 15 days after the treatment. Western blot analysis revealed that, among the secretary machinery proteins examined, hippocampal SV2A was selectively elevated by PTZ kindling. PTZ kindling-induced SV2A expression appeared region-specific and the SV2A levels in the cerebral cortex or cerebellum were unaltered. In addition, SV2A expression by PTZ kindling was prominent in the hilar region of the dentate gyrus (DG) where GABAergic interneurons are located, but not in other hippocampal regions (e.g., the stratum lucidum of the CA3 and synaptic layers surrounding CA1 or CA3 pyramidal neurons). These findings suggest that PTZ kindling preferentially elevates SV2A expression in the hippocampus probably as a compensatory mechanism to activate the inhibitory neurotransmission.  相似文献   

7.
Impairment in the activity and expression of glutamate transporters has been found in experimental models of epilepsy in adult animals. However, there are few studies investigating alterations on glutamate transporters caused by epilepsy in newborn animals, especially in the early periods after seizures. In this study, alterations in the hippocampal glutamate transporters activity and immunocontent were investigated in neonatal rats (7 days old) submitted to kainate-induced seizures model. Glutamate uptake, glutamate transporters (GLT-1, GLAST, EAAC1) and glutamine synthetase (GS) were assessed in hippocampal slices obtained 12 h, 24 h, 48 h, 72 h and 60 days after seizures. Immunoreactivity for hippocampal GFAP, NeuN and DAPI were assessed 24 h after seizure. Behavioral analysis (elevated-plus maze and inhibitory avoidance task) was also investigated in the adult animals (60 days old). The decrease on glutamate uptake was observed in hippocampal slices obtained 24 h after seizures. The immunocontent of GLT-1 increased at 12 h and decreased at 24 h (+62% and −20%, respectively), while GLAST increased up to 48 h after seizures. No alterations were observed for EAAC1 and GS. It should be mentioned that there were no long-term changes in tested glutamate transporters at 60 days after kainate treatment. GFAP immunoreactivity increased in all hippocampal subfields (CA1, CA3 and dentate gyrus) with no alterations in NeuN and DAPI staining. In the adulthood, kainate-treated rats showed anxiety-related behavior and lower performance in the inhibitory avoidance task. Our findings indicate that acute modifications on hippocampal glutamate transporters triggered by a single convulsive event in early life may play a role in the behavioral alterations observed in adulthood.  相似文献   

8.
9.
We used a glutamate oxidase (GluOx)-immobilized glass coverslip for reducing diffusional blur and improving the temporal resolution of visualizing l-glutamate fluxes in acute brain slices. The immobilization of GluOx on an avidin modified glass coverslips was achieved by optimized the amine coupling method. The GluOx coverslip was applied to the imaging of l-glutamate fluxes in acute hippocampal slices under hypoxia and KCl stimulation. A slice from mouse brain was loaded with horseradish peroxidase (HRP) and substrate DA-64, and placed on the GluOx coverslip for stimulation. The regional distribution of hypoxia-induced l-glutamate fluxes was analyzed. The maximum flux at 3 min after the onset of hypoxia increased in the order CA1 > CA3 > DG. The time-courses of the l-glutamate fluxes at CA1 and DG were biphasic, while that at CA3 decreased monotonously. The KCl-stimulated release of l-glutamate in the presence of the dl-TBOA uptake inhibitor was imaged. While no noticeable change was observed in the absence of dl-TBOA, l-glutamate fluxes in the presence of the inhibitor increased in the order CA1 > CA3 > DG, reflecting the effect of uptake processes. The present approach suppressed diffusional blur of the glutamate signal and improved the temporal resolution as compared with the BSA-HRP membrane method described earlier.  相似文献   

10.
Aims Rutin is one of the flavonoids that has many beneficial effects on the health. Previously, we showed that rutin has a protective effect on trimethyltin (TMT)-induced memory dysfunction in rats. The aim of this study was to investigate the protective effects of rutin on TMT-induced hippocampal injury and the time course profiles of these effects in rats. Methods Four-week-old male Sprague-Dawley (SD) rats were fed chow with or without rutin (0.75%) during the experimental period and were administered with a single dose of TMT (8.5 mg/kg b.w., p.o.) or vehicle at 6 weeks of age. The rats were sacrificed 5, 10, or 20 days after the TMT administration and then histological and molecular examinations of the hippocampus were performed. Results Rutin supplementation suppressed the TMT-induced decrease in the number of hippocampal pyramidal neurons 20 days after TMT administration. The TMT-induced up-regulation of the mRNA expression levels of reactive microglia marker and pro-inflammatory cytokines were reversed by rutin supplementation 10 or 20 days after the TMT administration. Conclusions These results suggested that the neuroprotective effect of rutin on TMT-induced spatial memory impairment could be attributable to its inhibitory effect against microglial activation and its role in synapse formation via neurotrophic factors in the hippocampus.  相似文献   

11.
12.
Trimethyltin (TMT), an organotin compound considered a useful tool to obtain an experimental model of neurodegeneration, exhibits neurotoxicant effects selectively localised in the limbic system and especially in the hippocampus, which are different in the rat and in mice. In the rat hippocampus, we investigated the expression of aldehyde 4-hydroxynonenal, a major bioactive marker of membrane lipid peroxidation, heat shock protein (HSP) 110/105 family members, markers of oxidative stress, and the neuroinflammatory marker cyclooxygenase-2 after TMT-intoxication at various time points after treatment. Our data show that TMT-induced neurodegeneration in the rat hippocampus is associated specifically with oxidative stress and lipid peroxidation, but not with HSP expression, indicating species-specific differences in the neurotoxicity of TMT between rats and mice.  相似文献   

13.
In the present study, we examined patterns of A-myb expression in the kainic acid (KA)-treated mouse hippocampus. Western blot analysis revealed that A-myb expression was dramatically increased in brain 3 days after KA treatment, and was sustained for more than 7 days. A-myb immunoreactivity was restricted to hippocampal neurons in control mice. Three days after KA treatment, strong A-myb immunoreactivity was observed in reactive astrocytes throughout the CA3 region. Thereafter, A-myb immunoreactive astrocytes gradually concentrated around the CA3 region in parallel with selective neuronal loss, and only a few A-myb immunoreactive astrocytes persisted in the CA3 region 14 days after KA treatment. These findings suggest that the A-myb plays a role in the reactive gliosis signaling pathway in KA-induced excitotoxic lesions.  相似文献   

14.
15.
Alzheimer’s disease is the most common form of dementia and is structurally characterized by brain atrophy and loss of brain volume. Aβ is one of the widely accepted causative factors of AD. Aβ deposition is positively correlated with brain atrophy in AD. In the present study, structural brain imaging techniques such as Magnetic Resonance Imaging (MRI) were used to measure neuroanatomical alterations in Alzheimer’s disease brain. MRI is a non-invasive method to study brain structure. The objective of the present study was to elucidate the role of Aβ on brain structure in the aged rabbit brain. Among 20 aged rabbits, one batch (n = 10) rabbits was injected chronically with Aβ(1-42) and another batch (n = 10) with saline. The MRI was conducted before Aβ(1-42)/saline injection and after 45 days of Aβ(1-42)/saline injection. All the aged rabbits underwent MRI analysis and were euthanized after 45 days. The MRI results showed a significant reduction in thickness of frontal lobe, hippocampus, midbrain, temporal lobe and increases in the lateral ventricle volume. We also conducted an MRI study on AD (n = 10) and normal (n = 10) cases and analyzed for the thicknesses of frontal lobe, hippocampus, midbrain, temporal lobe and lateral ventricle lobe. We found significant reductions in thickness of the frontal lobe and the hippocampus. However, no significant reduction in the thickness of midbrain, temporal lobe or increase in the lateral ventricle volume was observed compared to normal. Correlations in brain atrophy changes between rabbit brain and human AD brain were found for frontal lobe and hippocampal regions. In contrast, other regions such as midbrain, temporal lobe, and lateral ventricles were not correlated with rabbit brain atrophy changes in the corresponding regions. The relevance of these changes in AD is discussed.  相似文献   

16.
In the present study, we investigated the temporal and spatial alterations of ceruloplasmin immunoreactivity in the gerbil hippocampus and dentate gyrus after 5 min transient forebrain ischemia. In sham-operated animals, ceruloplasmin immunoreactivity in the hippocampal CA2/3 areas was higher than that of other areas. Ceruloplasmin immunoreactivity and its protein content significantly increased and were highest in the CA1 area 1 day after ischemia-reperfusion. At this time point, the immunoreactivity was shown in pyramidal cells of the CA1 area. Four days after ischemia-reperfusion, ceruloplasmin immunoreactivity was shown in astrocytes in the hippocamapal CA1 area. These results suggest that reactive oxygen species (ROS) do not immediately damage neuronal cytosol, unlike DNA. An interval of time is required for the full expression of the cytoplasmic protein injury by ROS. This delayed neuronal injury 1 day after ischemic insult might provide a window of opportunity for therapeutic interventions using antioxidants.  相似文献   

17.
To investigate the activity of senescence-associated beta-galactosidase (SA-beta-GAL) in the hippocampus of aging rats. Hippocampi of 6-, 18-, and 24-month-old rats were observed by histochemical staining for SA-beta-GAL and cytochemical staining for SA-beta-GAL in cultured hippocampal neurons. The activity of SA-beta-GAL doubled in hippocampal pyramidal cells of the CA3 region in rats between 6 and 18 months (14.57 ± 2.74% vs. 31.66 ± 14.12% SA-beta-GAL-positive, respectively), and reached 50.76 ± 14.41% positive at 24 months. The activity of SA-beta-GAL also increased as a function of time upon prolonged culture of cultured hippocampal neurons with 95% of cells being SA-beta-GAL-positive at 20 days in vitro. Interestingly, no SA-beta-GAL-positive cells were found in neurons of the hippocampal dentate gyrus, a neurogenic region of the brain, at any age examined. SA-beta-GAL can be used as a senescence biomarker in determining senescent neurons in hippocampal pyramidal cells of the CA3 region in advanced aging.  相似文献   

18.
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell–cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.  相似文献   

19.
Regulators of mitogen activated protein kinases (MAPK) and c-Jun N-terminal/stress-activated kinase (JNK) include Rho-like small GTP-binding proteins and their regulators. SynGAP and kalirin-7 are postsynaptic density-enriched proteins identified through their interaction with Rho GTPases and PSD-95 scaffold protein. We examined immunoreactivity of SynGAP, kalirin-7, and PSD-95, phosphorylation of MAPK and JNK in control and postischemic hippocampus in gerbil model of transient forebrain ischemia. In normal brain higher amount of kalirin-7 but a lower amount of P-JNK was found in ischemia-resistant hippocampal area: CA2-3, DG than in ischemia-vulnerable CA1. After 5 min ischemia and 1 h reperfusion a decrease of P-ERK and increase of P-JNK were uniformly observed in the hippocampal parts. By contrast, the amount of kalirin-7 in CA2-3, DG reached 56% (P < 0.001) of control while was doubled in CA1. Oppositely, the immunoreactivity of SynGAP was increased in CA2-3, DG and reduced in CA1. Our data indicate that SynGAP and kalirin-7 take part in the regulation of ischemic signal transduction but the mechanism does not seem directly connected with the activation of MAPK and JNK.  相似文献   

20.
The purpose of this study was to determine if mild hypothermia alters mitotic activity in normal and post-ischemic hippocampal slices. (1) Normothermic oxygen–glucose deprivation (OGD 60 min) increased mitotic activity in the hippocampus up to 4d post-OGD. (2) Mild hypothermia (33 °C for 24 h) initiated after OGD stress reduced mitotic activity compared to normothermic controls up to 8 d post-OGD. (3) Mild hypothermia stimulated mitotic activity in normal (no OGD stress) hippocampus up to 24 h post-hypothermia. In conclusion, mild transient hypothermia can increase or decrease mitotic activity depending upon the experimental condition of the hippocampal slices when hypothermia is induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号