首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundThe accumulation of advanced glycated end products (AGEs) in retinal blood vessels is one of the major etiological factors contributing to diabetic retinopathy. Aminoguanidine (AG) is one of the most extensively used inhibitors of AGEs formation. The aim of this study was to investigate whether AG could protect the development of diabetic retinopathy through inhibition of AGEs.MethodsRat diabetes was induced by intraperitoneal injection with streptozotocin (STZ). AG was given to rats in drinking water. Retina was extracted 3 and 6 months following STZ and AG administration. Immunochemistry and transmission electron microscope were used to detect the expression of AGEs and retina morphology.ResultsExtensive staining of AGEs was detected in retinal blood vessels of 3- and 6-month diabetic rats, while no significant staining was found in the control non-diabetic retina or AG treated groups. Pericyte loss, endothelial cell proliferation, increased ratio of endothelial cells/pericytes, acellular capillaries and capillary occlusion were observed in the retina of 6-month diabetic rats. The increased electron density of retinal capillary basement membrane, mitochondrial swelling in pericytes and endothelial cells were also found in 6-month diabetic rats. The 3-month diabetic rats and the AG-treated rats did not have similar morphological changes compared to control group. The AGEs staining in AG-treated rats was still weakly positive.ConclusionsAGEs plays pivotal roles in diabetic retinopathy. AGE deposition occurs prior to retinal microvasculature changes. AG could prevent the onset and development of diabetic retinopathy through inhibition of AGEs.  相似文献   

2.
In the pathogenesis of diabetic retinopathy, H-Ras (a small molecular weight G-protein) and matrix metalloproteinase-9 (MMP9) act as pro-apoptotic, accelerating the apoptosis of retinal capillary cells, a phenomenon that predicts its development and the activation of MMP9 is under the control of H-Ras. The goal of this study is to elucidate the cellular mechanism by which H-Ras activates MMP9 culminating in the development of diabetic retinopathy. Using isolated retinal endothelial cells, the effect of regulation of H-Ras downstream signaling cascade, Raf-1, MEK, and ERK, was investigated on glucose-induced activation of MMP9. In vitro results were confirmed in the retina obtained from diabetic mice manipulated for MMP9 gene, and also in the retinal microvasculature obtained from human donors with diabetic retinopathy. Regulation of Raf-1/MEK/ERK by their specific siRNAs and pharmacologic inhibitors prevented glucose-induced activation of MMP9 in retinal endothelial cells. In MMP9-KO mice, diabetes had no effect on retinal MMP9 activation, and H-Ras/Raf-1/MEK signaling cascade remained normal. Similarly, donors with diabetic retinopathy had increased MMP9 activity in their retinal microvessels, the site of histopathology associated with diabetic retinopathy, and this was accompanied by activated H-Ras signaling pathway (Raf-1/ERK). Collectively, these results suggest that Ras/Raf-1/MEK/ERK cascade has an important role in the activation of retinal MMP9 resulting in the apoptosis of its capillary cells. Understanding the upstream mechanism responsible for the activation of MMP9 should help identify novel molecular targets for future pharmacological interventions to inhibit the development/progression of diabetic retinopathy.  相似文献   

3.
Diabetic retinopathy is a disease of the retinal microvasculature that develops as a complication of diabetes mellitus and constitutes a major cause of blindness in adults of all ages. Diabetic retinopathy is characterized by the loss of capillary cells leading to increased vasopermeability, ischemia, and hypoxia that trigger the excessive formation of new blood vessels in the retina. The influence of the pituitary gland in the pathophysiology of diabetic retinopathy was recognized nearly six decades ago, but the contribution of pituitary hormones to this disease remains unclear. Recent studies have shown that the pituitary hormone prolactin is proteolytically cleaved to vasoinhibins, a family of peptides with potent antivasopermeability, vasoconstrictive, and antiangiogenic actions that can protect the eye against the deleterious effects of the diabetic state. In this review, we summarize what is known about the changes in the circulating levels of prolactin and vasoinhibins during diabetes and diabetic retinopathy as well as the implications of these changes for the development and progression of the disease with particular attention to hyperprolactinemia in pregnancy and postpartum. We discuss the effects of prolactin and vasoinhibins that may impact diabetic retinopathy and suggest these hormones as important targets for therapeutic interventions.  相似文献   

4.
Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress.  相似文献   

5.
糖尿病视网膜疾病是导致成年人失明的主要因素,是糖尿病的一种令人恐惧的并发症,高血糖被认为是促进其发展的主要原因。高血糖不断地破坏视网膜的微血管系统最终导致视网膜的许多代谢,结构和功能的紊乱。视网膜微血管内皮细胞在微脉管系统中形成树枝状供应视网膜神经,这些内皮细胞的解剖和生理符合重要视觉保护的营养需求[1]。一方面,内皮组织务必确保氧的供应和代谢活跃的视网膜营养供应;另一方面,内皮细胞有助于血-视网膜屏障将循环产生的毒素分子,白细胞促炎性物质排出体外来保护视网膜,这种特性也可能会引起疾病,比如:视网膜血管的渗漏和新生血管,炎性物质转移,因此,视网膜内皮细胞在视网膜缺血性病变,血管炎中起到重要作用,包括糖尿病视网膜病变和视网膜炎症或感染尤其是后葡萄膜炎。使用基因表达和蛋白质组学分析等研究方法,有助于了解这些疾病的发病机制。为了进一步开展对糖尿病视网膜疾病的研究,有必要就目前有关糖尿病视网膜病变患者微血管内皮细胞的研究进展予以综述,旨在为糖尿病视网膜病变的深入研究提供参考依据。  相似文献   

6.
Normal vision depends on the correct function of retinal neurons and glia and it is impaired in the course of diabetic retinopathy. Müller cells, the main glial cells of the retina, suffer morphological and functional alterations during diabetes participating in the pathological retinal dysfunction. Recently, we showed that Müller cells express the pleiotropic protein potassium channel interacting protein 3 (KChIP3), an integral component of the voltage-gated K+ channels KV4. Here, we sought to analyze the role of KChIP3 in the molecular mechanisms underlying hyperglycemia-induced phenotypic changes in the glial elements of the retina. The expression and function of KChIp3 was analyzed in vitro in rat Müller primary cultures grown under control (5.6 mM) or high glucose (25 mM) (diabetic-like) conditions. We show the up-regulation of KChIP3 expression in Müller cell cultures under high glucose conditions and demonstrate a previously unknown interaction between the KV4 channel and KChIP3 in Müller cells. We show evidence for the expression of a 4-AP-sensitive transient outward voltage-gated K+ current and an alteration in the inactivation of the macroscopic outward K+ currents expressed in high glucose-cultured Müller cells. Our data support the notion that induction of KChIP3 and functional changes of KV4 channels in Müller cells could exert a physiological role in the onset of diabetic retinopathy.  相似文献   

7.
OBJECTIVES--(a) To report on the basic parameters of retinal blood flow in a population of diabetic patients with and without retinopathy and non-diabetic controls; (b) to formulate a haemodynamic model for the pathogenesis of diabetic retinopathy from this and other studies. DESIGN--Laser-Doppler velocimetry and computerised image analysis to determine retinal blood flow in a large cross sectional study. SETTING--Diabetic retinopathy outpatient clinic. SUBJECTS--24 non-diabetic controls and 76 diabetic subjects were studied (63 patients with insulin dependent diabetes, 13 with non-insulin dependent diabetes). Of the diabetic subjects, 12 had no diabetic retinopathy, 27 had background retinopathy, 13 had pre-proliferative retinopathy, 12 had proliferative retinopathy, and 12 had had pan-retinal photocoagulation for proliferative retinopathy. MAIN OUTCOME MEASURES--Retinal blood flow (microliters/min) and conductance (rate of flow per unit of perfusion pressure). RESULTS--In comparison with non-diabetic controls (9.52 microliters/min) and diabetic patients with no diabetic retinopathy (9.12 microliters/min) retinal blood flow was significantly increased in all grades of untreated diabetic retinopathy (background 12.13 microliters/min, pre-proliferative 15.27 microliters/min, proliferative 13.88 microliters/min). There was a significant decrease in flow after pan-retinal photocoagulation in comparison with all the other groups studied (4.48 microliters/min). Conductance of the retinal circulation was higher in the untreated diabetic retinopathy groups. These results were independent of age, sex, type of diabetes, duration of diabetes, glycated haemoglobin concentration, blood glucose concentration, blood pressure, and intraocular pressure. CONCLUSIONS--Retinal blood flow is significantly increased in diabetic retinopathy in comparison with non-diabetic controls and diabetic subjects with no retinopathy. This has implications for controlling hypertension and hyperglycaemia as a strategy in reducing morbidity from diabetic retinopathy.  相似文献   

8.
Matrix metalloproteinases (MMPs) degrade extracellular matrix and regulate many functions including cell signaling. Oxidative stress is implicated in the development of diabetic retinopathy, and MMP-2, the most ubiquitous member of the MMP family, is sensitive to oxidative stress. This study aimed to determine the regulation of MMP-2 by oxidative stress in the development of diabetic retinopathy and the role of MMP-2 in the apoptosis of retinal capillary cells. The effects of mitochondrial superoxide scavenger on glucose-induced alterations in MMP-2, and its proenzyme activator MT1-MMP and physiological inhibitor TIMP-2, were determined in retinal endothelial cells, and the regulation of their glucose-induced accelerated apoptosis by the inhibitors of MMP-2 was accessed. To confirm in vitro results, the effects of antioxidant supplementation on MMP-2, MT1-MMP, and TIMP-2 were investigated in the retina of streptozotocin-induced diabetic rats. Glucose-induced activation of retinal capillary cell MMP-2 and MT1-MMP and decrease in TIMP-2 were inhibited by superoxide scavengers, and their accelerated apoptosis was prevented by the inhibitors of MMP-2. Antioxidant therapies, which have been shown to inhibit oxidative stress, capillary cell apoptosis, and retinopathy in diabetic rats, ameliorated alterations in retinal MMP-2 and its regulators. Thus, MMP-2 has a proapoptotic role in the loss of retinal capillary cells in diabetes, and the activation of MMP-2 is under the control of superoxide. This suggests a possible use of MMP-2-targeted therapy to inhibit the development of diabetic retinopathy.  相似文献   

9.
Diabetic retinopathy represents the most common causes of vision loss in patients affected by diabetes mellitus. The cause of vision loss in diabetic retinopathy is complex and remains incompletely understood. One of the earliest changes in the development of retinopathy is the accelerated apoptosis of retinal microvascular cells and the formation of acellular capillaries by unknown mechanism. Results of a recent research suggest an important role of matrix metalloproteinases (MMPs) in the development of diabetic retinopathy. MMPs are a large family of proteinases that remodel extracellular matrix components, and under pathological condition, its induction is considered as a negative regulator of cell survival; and in diabetes, latent MMPs are activated in the retina and its capillary cells, and activation of MMP-2 and -9 induces apoptosis of retinal capillary cells. This review will focus on the MMP-2 and MMP-9 in the diabetic retina with special reference to oxidative stress, mitochondria dysfunction, inflammation and angiogenesis, as well as summarizing the current information linking these proteins to pathogenesis of diabetic retinopathy.  相似文献   

10.
11.
12.
13.
Diabetic retinopathy is the leading cause of visual dysfunction in working adults and is attributed to retinal vascular and neural cell damage. Recent studies have described elevated levels of membrane attack complex (MAC) and reduced levels of membrane associated complement regulators including CD55 and CD59 in the retina of diabetic retinopathy patients as well as in animal models of this disease. We have previously described the development of a soluble membrane-independent form of CD59 (sCD59) that when delivered via a gene therapy approach using an adeno-associated virus vector (AAV2/8-sCD59) to the eyes of mice, can block MAC deposition and choroidal neovascularization. Here, we examine AAV2/8-sCD59 mediated attenuation of MAC deposition and ensuing complement mediated damage to the retina of mice following streptozotocin (STZ) induced diabetes. We observed a 60% reduction in leakage of retinal blood vessels in diabetic eyes pre-injected with AAV2/8-sCD59 relative to negative control virus injected diabetic eyes. AAV2/8-sCD59 injected eyes also exhibited protection from non-perfusion of retinal blood vessels. In addition, a 200% reduction in retinal ganglion cell apoptosis and a 40% reduction in MAC deposition were documented in diabetic eyes pre-injected with AAV2/8-sCD59 relative to diabetic eyes pre-injected with the control virus. This is the first study characterizing a viral gene therapy intervention that targets MAC in a model of diabetic retinopathy. Use of AAV2/8-sCD59 warrants further exploration as a potential therapy for advanced stages of diabetic retinopathy.  相似文献   

14.
Hyperglycemia is considered as one of the major determinants in the development of diabetic retinopathy, but the progression of retinopathy resists arrest after hyperglycemia is terminated, suggesting a metabolic memory phenomenon. Diabetes alters the expression of retinal genes, and this continues even after good glycemic control is re‐instituted. Since the expression of genes is affected by chromatin structure that is modulated by post‐translational modifications of histones, our objective is to investigate the role of histone acetylation in the development of diabetic retinopathy, and in the metabolic memory phenomenon. Streptozotocin‐induced rats were maintained either in poor glycemic control (PC, glycated hemoglobin, GHb >11%) or good glycemic control (GC, GHb <6%) for 12 months, or allowed to be in PC for 6 months followed by in GC for 6 months (PC‐GC). On a cellular level, retinal endothelial cells, the target of histopathology of diabetic retinopathy, were incubated in 5 or 20 mM glucose for 4 days. Activities of histone deacetylase (HDAC) and histone acetyltransferase (HAT), and histone acetylation were quantified. Hyperglycemia activated HDAC and increased HDAC1, 2, and 8 gene expressions in the retina and its capillary cells. The activity HAT was compromised and the acetylation of histone H3 was decreased. Termination of hyperglycemia failed to provide any benefits to diabetes‐induced changes in retinal HDAC and HAT, and histone H3 remained subnormal. This suggests “in principle” the role of global acetylation of retinal histone H3 in the development of diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. J. Cell. Biochem. 110: 1306–1313, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR.  相似文献   

16.
The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4 V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants.  相似文献   

17.
Oxidative stress is increased in the retina in diabetes, and it is considered to play an important role in the development of retinopathy. Findings indicate that obtusifolin has antioxidant properties. The purpose of this study was to examine the effect of obtusifolin on retinal capillary cell apoptosis and the development of pathology in diabetes. Retina was used from streptozotocin-induced diabetic rats receiving diets supplemented with or without obtusifolin (100, 200, and 400 mg/kg) for 11 months of diabetes. Capillary cell apoptosis (by terminal transferase-mediated dUTP nick-end labeling) and formation of acellular capillaries were investigated in the trypsin-digested retinal microvessels. The effect of obtusifolin administration on retinal 8-hydroxy-2′deoxyguanosine (8-OHdG) and nitrotyrosine levels was determined by enzyme-linked immunosorbent assay. Obtusifolin administration for the entire duration of diabetes inhibited capillary cell apoptosis and the number of acellular capillaries in the retina, despite similar severity of hyperglycemia in the four diabetic groups (with and without obtusifolin). Retinal 8-OHdG and nitrotyrosine levels were significantly increased, respectively, in diabetes, and obtusifolin administration inhibited these increases. Our results demonstrate that the long-term administration of obtusifolin has beneficial effects on the development of diabetic retinopathy via inhibition of accumulation of oxidatively modified DNA and nitrotyrosine in the retina. Obtusifolin represents an achievable adjunct therapy to help prevent vision loss in diabetic patients.  相似文献   

18.
Apoptosis of retinal endothelial cells and pericytes is postulated to contribute to the development of retinopathy in diabetes. The goal of this study is to investigate diabetes-induced activation of retinal caspase-3, an apoptosis executer enzyme, in retina, and examine the effects of antioxidants on the activation. Caspase-3 activation was determined in the retina of alloxan diabetic rats (2-14 months duration) and in the isolated retinal capillary cells (endothelial cells and pericytes) by measuring cleavage of caspase-3 specific fluorescent substrate, and cleavage of caspase-3 holoenzyme and poly (ADP ribosyl) polymerase. Effect of antioxidants on the activation of caspase-3 was determined by feeding a group of diabetic rats diet supplemented with a comprehensive mixture of antioxidants, including Trolox, alpha-tocopherol, N-acetyl cysteine, ascorbic acid, beta-carotene and selenium for 2-14 months, and also under in vitro conditions by incubating isolated retinal capillary cells with antioxidants with wide range of actions. Caspase-3 was activated in the rat retina at 14 months of diabetes (P < 0.05 vs. normal), but not at 2 months of diabetes, and administration of antioxidants for the entire duration inhibited this activation. In the isolated retinal capillary cells incubated in 25 mM glucose medium, caspase-3 activity was increased by 50% compared to the cells incubated in 5 mM glucose (P < 0.02), and antioxidants or caspase-3 inhibitor inhibited this increase. Our results suggest that increased oxidative stress in diabetes is involved in the activation of retinal caspase-3 and apoptosis of endothelial cells and pericytes. Antioxidants might be inhibiting the development of diabetic retinopathy by inhibiting microvascular apoptosis.  相似文献   

19.
Mitochondrial dysfunction is considered to play an important role in the development of diabetic retinopathy. Recent evidence has also shown many similarities between diabetic retinopathy and a low grade chronic inflammatory disease. The aim of this study is to understand the interrelationship between proinflammtory mediator, IL-1β and mitochondrial dysfunction in the accelerated loss of capillary cells in the retina. Using IL-1β receptor gene knockout (IL-1R1?/?) diabetic mice, we have investigated the effect of regulation of IL-1β on mitochondrial dysfunction and mtDNA damage, and increased retinal capillary cell apoptosis and the development of retinopathy. Retinal mitochondrial dysfunction and mtDNA damage were significantly ameliorated in IL-1R1?/? mice, diabetic for ~10 months, compared to the wild-type diabetic mice. This was accompanied by protection of accelerated capillary cell apoptosis and the development of acellular capillaries, histopathology associated with diabetic retinopathy. Thus, mitochondrial damage could be one of the key events via which increased inflammation contributes to the activation of the apoptotic machinery resulting in the development of diabetic retinopathy, and the possible mechanism via which inflammation contributes to the development of diabetic retinopathy includes continuous fueling of the vicious cycle of mitochondrial damage, which could be disrupted by inhibitors of inflammatory mediators.  相似文献   

20.
Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号