共查询到3条相似文献,搜索用时 0 毫秒
1.
The supramolecular assemblies of voltage-dependent anion channels in the native membrane 总被引:8,自引:0,他引:8
Voltage-dependent anion channels (VDACs) are major constituents of the outer mitochondrial membrane (OMM). These primary transporters of nucleotides, ions and metabolites mediate a substantial portion of the OMM molecular traffic. To study the native supramolecular organization of the VDAC, we have isolated, characterized and imaged OMMs from potato tubers. SDS-PAGE and mass spectrometry of OMMs revealed the presence of the VDAC isoforms POM34 and POM36, as well as the translocase of the OMM complex. Tubular two-dimensional crystals of the VDAC spontaneously formed after incubation of OMMs for two to three months at 4 degrees C. Transmission electron microscopy revealed an oblique lattice and unit cells housing six circular depressions arranged in a hexagon. Atomic force microscopy of freshly isolated OMMs demonstrated (i) the existence of monomers to tetramers, hexamers and higher oligomers of the VDAC and (ii) its spatial arrangement within the oligomers in the native membrane. We discuss the importance of the observed oligomerization for modulation of the VDAC function, for the binding of hexokinase and creatine kinase to the OMM and for mitochondria-mediated apoptosis. 相似文献
2.
Siddhartha S. Saha Pritha Dasgupta Sumita Sengupta Mahua Ghosh 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012
Background
α-Eleostearic acid and punicic acid, two typical conjugated linolenic acid (CLnA) isomers present in bitter gourd and snake gourd oil respectively, exhibit contrasting cis-trans configuration which made them biologically important.Methods
Rats were divided into six groups. Group 1 was control and group 2 was treated control. Rats in the groups 3 and 4 were treated with mixture of α-eleostearic acid and punicic acid (1:1) (0.5% and 1.0% respectively) while rats in the groups 5 and 6 were treated with 0.5% of α-eleostearic acid and 0.5% of punicic acid respectively along with sodium arsenite by oral gavage once per day.Results
Results showed that increase in nitric oxide synthase (NOS) activity, inflammatory markers expression, platelet aggregation, lipid peroxidation, protein oxidation, DNA damage and altered expression of liver X receptor-α (LXR-α) after arsenite treatment were restored with the supplementation of oils containing CLnA isomers. Altered activities of different antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and ferric reducing ability of plasma (FRAP) also restored after oil supplementation. Altered morphology and fluidity of erythrocyte membrane studied by atomic force and scanning electron microscopy, after stress induction were significantly improved due to amelioration in cholesterol/phospholipid ratio and fatty acid profile of membrane. Oils treatment also improved morphology of liver and fatty acid composition of hepatic lipid.Conclusions
Overall two isomers showed synergistic antioxidant and anti-inflammatory effect against induced perturbations and membrane disintegrity.General significance
Synergistic antioxidant and anti-inflammatory role of these CLnA isomers were established by this study. 相似文献3.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine. 相似文献