首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对土曲霉出发菌株进行紫外线诱变、LiCl诱变以及代谢终产物抗性菌株选育。代谢终产物抗性菌株选育是一种有效的遗传育种方法,能显著提高产酸量。得到一株代号为At394的菌株,以玉米淀粉部分水解糖为碳源,产酸量为53.9g/L,比出发菌株提高了42.6%。糖酸转化率为61.5%,为所有筛选菌株最高。用红外光谱进行结构分析证实所得产物为衣康酸。  相似文献   

2.
Highly branched mutants of two strains of Aspergillus oryzae (IFO4177, which produces alpha-amylase, and a transformant of IFO4177 [AMG#13], which produces heterologous glucoamylase in addition to alpha-amylase) were generated by UV or nitrous acid mutagenesis. Four mutants of the parental strain (IFO4177), which were 10 to 50% more branched than the parental strain, were studied in stirred batch culture and no differences were observed in either the amount or the rate of enzyme production. Five mutants of the transformed parental strain (AMG#13), which were 20 to 58% more branched than the parental strain, were studied in either batch, fed-batch or continuous culture. In batch culture, three of the mutants produced more glucoamylase than the transformed parental strain, although only two mutants produced more glucoamylase and alpha-amylase combined. No increase in enzyme production was observed in either chemostat or fed-batch culture. Cultures of highly branched mutants were less viscous than those of the parental and transformed parental strains. A linear relationship was found between the degree of branching (measured as hyphal growth unit length) and culture viscosity (measured as the torque exerted on the rheometer impeller) for these strains. DOT-controlled fed-batch cultures (in which the medium feed rate was determined by the DOT) were thus inoculated with either the transformed parent or highly branched mutants of the transformed parent to determine whether the reduced viscosity would improve aeration and give higher enzyme yields. The average rate of medium addition was higher for the two highly branched mutants (ca. 8.3 g medium h(-1)) than for the parental strain (5.7 g medium h(-1)). Specific enzyme production in the DOT controlled fed-batch cultures was similar for all three strains (approx. 0.24 g alpha-amylase and glucoamylase [g of biomass](-1)), but one of the highly branched mutants made more total enzyme (24.3 +/- 0.2 g alpha-amylase and glucoamylase) than the parental strain (21.7 +/- 0.4 g alpha-amylase and glucoamylase).  相似文献   

3.
Summary The effect of trace and alkaline metals on itaconic acid production by polyurethane-foam-immobilized Aspergillus terreus was examined in repeated shake-flask cultures according to a statistical experimental design. An increase in the glucose or copper concentration increased the need for earth alkaline metals. The experimentally obtained highest itaconic acid concentration of 51 g/l from 15% glucose with a total productivity of 3.67 g/l per day was reached during the first 14-day batch fermentation. In the fourth batch the calculated highest itaconic acid concentration of 19 g/l was reached with 25% glucose, 5 g/l of magnesium sulphate, 13 mg/l of copper sulphate and 10 g/l of calcium chloride. The immobilization of the mycelium increased the itaconic acid concentration obtained by as much as eightfold.Offprint requests to: H. Kautola  相似文献   

4.
定向选育衣康酸高产菌株的研究   总被引:1,自引:1,他引:0  
以衣康酸生产菌土曲霉A9002为出发菌株,经紫外线及亚硝基胍复合诱变后再行定向选育,即在以衣康酸为唯一碳源的培养基中富集不能同化衣康酸的菌种,将将它们涂布在含乌头酸酶抑制剂(单氟醋酸)的高糖、高衣康酸平板培养基上,最后从中而筛选出一支衣康酸氧化酶弱,乌头酸酶活强,并耐自身代谢产物的高产突变株A9003。此菌株在摇瓶培养72h后,产酸为9.2%,转化率为58.1%,在100m^3发酵罐生产性试验中,  相似文献   

5.
(S)-(+)-Citramalic-acid-producing activity in microorganisms was studied with resting cells in a reaction mixture containing itaconic acid. Itaconic-acid-utilizing bacteria were found to produce (S)-(+)-citramalic acid from itaconic acid. The strain, which showed the best productivity among those studied, was identified taxonomically as Alcaligenes denitrificans strain MCI2775. (S)-(+)-Citramalic acid produced by this strain was present in a 99.9% enantiometric excess. The culture and reaction conditions for the production were optimized for this strain. Addition of Mn2+, d-pantothenic acid and l-leucine to the culture medium enhanced the (S)-(+)-citramalic acid-producing activity. Under optimal conditions, 27 g (S)-(+)-citramalic acid/l was produced in 30 h. The yield to itaconic acid added was 69.0 mol%. Correspondence to: Y. Asano  相似文献   

6.
A novel type of threonine-producing strains, dihydrodipicolinate synthase (DPS)-defective mutants of Brevibacterium flavum, was isolated as alpha-amino-beta-hydroxyvaleric acid (AHV)-resistant producers. The third selection markers used were a strong lysine inhibition of threonine production and a lower production of lysine than that of threonine in those derived from strains with feedback-sensitive and-resistant aspartokinase (AK), respectively. The maximum threonine production by these DPS-defective mutants was 13.7 g/l at the optimum concentration of DL-diaminopimelic acid (DAP) in a medium containing 100 g/l of glucose, comparable to that by the previously reported conventional producers with feedback-resistant homoserine dehydrogenase (HD(R)). The DPS-defective mutants with feedback-sensitive AK showed a slow but substantial growth in the absence of DAP and their growth was markedly stimulated by DAP, while those with feedback-resistant AK grew well in the absence of DAP and their growth was not promoted by DAP more than that of the parent strain. DPS-defective mutants with HD(R) were derived from an HD(R) mutant producing 10 g/l of L-threonine and selected as AHV-resistant mutants with a higher productivity. The maximum production was 16 g/l.  相似文献   

7.
The continuous itaconic acid production from sucrose with Aspergillus terreus TKK 200-5-3 mycelium immobilized on polyurethane foam cubes was optimized in column bioreactors using statistical experimental design and empirical modelling. The highest itaconic acid product concentration calculated on the basis of the obtained model was 15.8 g l-1 in the investigated experimental area, when sucrose concentration was 13.5%, aeration rate 150 ml min-1 and residence time 178 h. From sucrose with immobilized A. terreus TKK 200-5-3 mycelium itaconic acid production was stable for at least 4.5 months in continuous column bioreactors. In comparison, using glucose as substrate and immobilized A. terreus TKK 200-5-1 mycelium as biocatalyst similar stability was obtained with higher product concentration. The omission of copper sulphate from the production medium gave the highest itaconic acid product concentration (26 g l-1) from 9% glucose with 0.25% ammonium nitrate and 0.095% magnesium sulphate.  相似文献   

8.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

9.
Summary The itaconic acid production by immobilizedAspergillus terreus TTK 200-5-3 mycelium was optimized in shake flask fermentations using statistical experimental design and empirical modelling. The maximum itaconic acid concentration was calculated to be 13.3 g/l in the investigated experimental area when initial sucrose concentration was 10%, ammonium nitrate concentration 0.275% and initial pH 3. The itaconic acid product concentration using immobilized mycelium was about double of that obtained with the free mycelium.  相似文献   

10.
The production of itaconic acid from glucose-based media by Aspergillus terreus NRRL 1960 was found to be controlled by stirring rate and pH. When the phosphorous (P) level in the production medium was reduced to less than 10 mg l(-1), the fungal mycelium exhausted its primary growth and started to excrete itaconic acid, while it continued its secondary growth at the expense of ammoniacal nitrogen. The fermentation exhibited a mixed-growth-associated product formation kinetics, the non-growth associated production term (mI) being practically zero only when the pH was left free to change from 3.4 down to 1.85. On the contrary, when the pH was kept reducing up to a constant value by automatic addition of KOH 4 mol l(-1), the itaconate yield coefficient on the initial glucose supplied (Y(I/So)) and mI and were 0.53 g g(-1) and 0.028 h(-1) at pH 2.4 and 320 rev min(-1) and 0.5 g g(-1) and 0.036 h(-1) at pH 2.8 and 400 rev min(-1), respectively. Although the differences between mI and Y(I/So) were statistically insignificant at the 95% confidence level, the net difference in the corresponding yield coefficients for itaconic acid on mycelial biomass resulted in a maximum itaconate production rate of 0.41 g l(-1) h(-1) at pH 2.8 and 400 rev min(-1), thus showing that this operating condition is no doubt optimal for the process under study.  相似文献   

11.
The production of carotenoids, lipid content, and fatty acid composition were all studied in a strain of Sporobolomyces ruberrimus when using different concentrations of technical glycerol as the carbon source and ammonium sulfate as the nitrogen source. The total lipids represented an average of 13% of the dry weight, and the maximum lipids were obtained when using 65.5 g/l technical glycerol (133.63 mg/ g). The optimal conditions for fatty acid production were at 27 degrees C using 20 g of ammonium sulfate and a pH range from 6 to 7, which produced a fatty acid yield of 32.5+/-1 mg/g, including 1.27+/- 0.15 mg of linolenic acid (LNA), 7.50+/-0.45 mg of linoleic acid (LLA), 5.50+/-0.35 mg of palmitic acid (PA), 0.60+/-0.03 mg of palmitoleic acid (PAL), 1.28+/-0.11 mg of stearic acid (SA), 9.09+/-0.22 mg of oleic acid, 2.50+/-0.10 mg of erucic acid (EA), and 4.25+/-0.20 mg of lignoceric acid (LCA), where the palmitic, oleic, and linoleic acids combined formed about 37% of the total fatty acids. The concentration of total carotenoids was 2.80 mg/g when using 20 g of ammonium sulfate, and consisted of torularhodin (2.70 mg/g) and beta-carotene (0.10 mg/ g), at 23 degrees C and pH 6. However, the highest amount with the maximum specific growth rate was obtained (micromax=0.096 h(-1)) with an ammonium sulfate concentration of 30 g/l.  相似文献   

12.
Summary The production of itaconic acid by immobilizedAspergillus terreus TKK 200-5-1 was studied both in shake flask cultures, and in continuous column bioreactors. The effect of glucose and ammonium nitrate concentrations, and of pH were examined using a statistical experimental plan. The highest itaconic acid product concentration could be reached at the highest investigated glucose concentration of 150 g/l and the highest initial pH of 3.75, in the absence of ammonium nitrate. In a continuous packed bed column system operated fro 4.5 months itaconic acid was obtained at a productivity of 328 mg/d per gram of polyurethane foam carrier.  相似文献   

13.
衣康酸生产菌种的定向选育和产酸条件的研究   总被引:2,自引:0,他引:2  
通过紫外线—高温复合诱变处理衣康酸生产菌株土曲霉构Aspergillus terreus As3.2811,用以琥珀酸为唯一碳源的选择性乎板定向筛选高产菌株,获得产酸率较其亲株提高了5倍以上的突变株。用正交试验的方法对突变株的适宜产酸条件进行了研究,通过分批补糖发酵可提高其产酸率高达39.92%。  相似文献   

14.
Summary Chemical mutagenesis with ethyl methanesulfonate (EMS) was used to develop strains ofLactobacillus delbrueckii (ATCC 9649) that tolerated increased lactic acid concentrations while continuously producing the acid. Three mutants (DP2, DP3 and DP4) were compared with wild-typeL. delbrueckii by standing fermentations with different glucose concentrations. All three mutants produced higher levels of lactic acid than the wild-type. In pH-controlled (pH 6.0) stirred-tank-batch fermentations, mutant DP3 in 12% glucose, 1% yeast extract/mineral salt/oleic acid medium produced lactic acid at a rate that was more than 2-times faster than the wild-type. Mutant DP3 also produced 77 g/l lactic acid compared with 58 g/l for the wild-type. Overall, compated with wild-type, the mutants DP2 and DP3 exhibited faster specific growth rates, shorter lag phases, greater lactic acid yields, tolerated higher lactic acid concentrations, and produced as much as 12% lactic acid in 12% glucose, 3% yeast extract/mineral salt/oleic acid medium which required an additional 9% glucose when the residual glucose concentration decreased to 3%. Mutant DP3 was stable for over 1.5 years (stored freeze dried). The strain development procedure was very successful; mutants with enhanced lactic acid-producing capacity were obtained each time the procedure was employed.Journal Paper No. J-14087 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA. Projects No. 2889 and 0178.  相似文献   

15.
Restricted glucose catabolite repressed mutants of P. stipiti CCY 39501 were selected using UV irradiation. Four mutants were obtained which assimilated glucose slower than the native strain of P. stipitis and the degree of glucose repression was about 2-fold lower for P5-90-133 and P5-200-16 mutants and about 10-fold lower for P5-80-7 and P5-80-35 mutants. P5-80-7 and P5-80-35 produced very small amounts of ethanol from glucose and xylose, whereas P5-90-133 and P5-200-16 fermented sugars at the wild-type level. These two mutants were selected for co-fermentation process with native strain of S. cerevisiae V30 or Ja(a), as well as with their respiratory deficient mutants. During co-culture process of P. stipitis mutants with native strains of S. cerevisiae the ethanol yields obtained ranged from 0.38 to 0.45 g/g, and this alcohol was produced mainly from glucose. But, when also xylose, besides glucose was fermented to ethanol during co-fermentation of both mutant strains, lower yields of ethanol (0.28-0.40 g/g) were obtained.  相似文献   

16.
Itaconic acid is a high potential platform chemical which is currently industrially produced by Aspergillus terreus. Heterologous production of itaconic acid with Escherichia coli could help to overcome limitations of A. terreus regarding slow growth and high sensitivity to oxygen supply. However, the performance achieved so far with E. coli strains is still low.We introduced a plasmid (pCadCS) carrying genes for itaconic acid production into E. coli and applied a model-based approach to construct a high yield production strain. Based on the concept of minimal cut sets, we identified intervention strategies that guarantee high itaconic acid yield while still allowing growth. One cut set was selected and the corresponding genes were iteratively knocked-out. As a conceptual novelty, we pursued an adaptive approach allowing changes in the model and initially calculated intervention strategy if a genetic modification induces changes in byproduct formation. Using this approach, we iteratively implemented five interventions leading to high yield itaconic acid production in minimal medium with glucose as substrate supplemented with small amounts of glutamic acid. The derived E. coli strain (ita23: MG1655 ∆aceAsucCDpykApykFptaPicd::cam_BBa_J23115 pCadCS) synthesized 2.27 g/l itaconic acid with an excellent yield of 0.77 mol/(mol glucose). In a fed-batch cultivation, this strain produced 32 g/l itaconic acid with an overall yield of 0.68 mol/(mol glucose) and a peak productivity of 0.45 g/l/h. These values are by far the highest that have ever been achieved for heterologous itaconic acid production and indicate that realistic applications come into reach.  相似文献   

17.
The conversion of sugarcane molasses for the production of lactic acid, acetic acid, and mannitol was enhanced by subjecting Lactobacillus brevis NM101-1 wild strain to various doses of gamma irradiation. Four mutants (LM-1-LM-4) obtained at gamma ray doses of 30, 60, 90, and 120 Gy produced higher levels of lactic acid, acetic acid, and mannitol than the wild-type. Among all the mutants tested, LM-3 strain showed the highest mannitol and acetic acid production which reached 198.95 and 96.86 g/l, respectively. On the other hand, mutant LM-1strain exhibited the best performance with respect to lactic acid production (143.73 g/l). Random amplified polymorphic DNA polymerase chain reaction technique (RAPD-PCR) using three primers (RP, R5, and M13) was used in order to detect the variation in DNA profile in response to gamma irradiation treatments. RAPD analysis indicated the appearance and disappearance of DNA polymorphic bands at different gamma ray doses. The results showed the potential of these mutants to be potential candidates for economical production of mannitol, lactic and acetic acids from molasses on a commercial scale.  相似文献   

18.
Itaconic acid, which is a promising organic acid in synthetic polymers and some base-material production, has been produced by Aspergillus terreus fermentation at a high cost. The recombinant Escherichia coli that contained the cadA gene from A. terreus can produce itaconic acid but with low yield. By introducing the protein–protein scaffold between citrate synthesis, aconitase, and cis-aconitase decarboxylase, 5.7 g/L of itaconic acid was produced, which is 3.8-fold higher than that obtained with the strain without scaffold. The optimum pH and temperature for itaconic acid production were 8.5 and 30°C, respectively. When the competing metabolic network was inactivated by knock-out mutation, the itaconic acid concentration further increased, to 6.57 g/L.  相似文献   

19.
When grown on a medium containing 5 g maltodextrin L-1, Aspergillus niger transformant N402[pAB6-10]B1, which has an additional 20 copies of the glucoamylase (glaA) gene, produced 320 +/- 8 mg (mean +/- S.E.) glucoamylase (GAM) L-1 in batch culture and 373 +/- 9 mg GAM L-1 in maltodextrin-limited chemostat culture at a dilution rate of 0.13 h-1. These values correspond to specific production rates (qp) of 5.6 and 16.0 mg GAM [g biomass]-1 h-1, respectively. In maltodextrin-limited chemostat cultures grown at dilution rates from 0.06 to 0.14 h-1, GAM was produced by B1 in a growth-correlated manner, demonstrating that a continuous flow culture system operated at a high dilution rate is an efficient way of producing this enzyme. In chemostat cultures grown at high dilution rates, GAM production in chemostat cultures was repressed when the limiting nutrient was fructose or xylose, but derepressed when the limiting nutrient was glucose (qp, 12.0), potassium (6.2), ammonium (4.1), phosphate (2.0), magnesium (1.5) or sulphate (0.9). For chemostat cultures grown at a dilution rate of 0.13 h-1, the addition of 5 g mycopeptone L-1 to a glucose-mineral salts medium resulted in a 64% increase in GAM concentration (from 303 +/- 12 to 496 +/- 10 mg GAM L-1) and a 37% increase in specific production rate (from 12.0 +/- 0.4 to 16.4 +/- 1.6 mg GAM [g biomass]-1 h-1). However, although recombinant protein production was stable for at least 948 h (191 generations) when A. niger B1 was grown in chemostat culture on glucose-mineral salts medium, it was stable for less than 136 h (27 generations) on medium containing mycopeptone. The predominant morphological mutants occurring after prolonged chemostat culture were shown to have selective advantage in the chemostat over the parental strain. Compared to their parental strains, two morphological mutants had similar GAM production levels, while a third had a reduced production level. Growth tests and molecular analysis revealed that the number of glaA gene copies in this latter strain (B1-M) was reduced, which could explain its reduced GAM production. Shake-flask cultures carried out with the various morphological mutants revealed that in batch culture all three strains produced considerably less GAM than their parent strains and even less than N402. We show that physiological changes in these morphological mutants contribute to this decreased level of GAM production.  相似文献   

20.
Sago starch was hydrolyzed using either chemical agents, or enzymes at various pH and concentrations. Hydrolysis using 5000 AUN/ml (0.5%, w/v) glucoamylase exhibited the highest itaconic acid yield up to 0.36 g/g sago starch, whereas hydrolysis using nitric acid at pH 2.0 yielded 0.35 g/g sago starch. The medium was optimized and the composition was (g/l) 140 sago starch, 1.8 corn steep liquor, 1.2 MgSO(4).7H(2)O and 2.9 NH(4)NO(3). When the optimal conditions of hydrolysis and medium composition were applied to itaconic acid production in a 3-l jar fermentor, the itaconic acid production was 48.2 g/l with a yield of 0.34 g/g sago starch. This was filtered from the cultured broth and 37.1g of itaconic acid was recovered with a purity of 97.2%. This result showed that sago starch could be converted to a value-added product with only a simple pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号