首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reversibly photochromic pigment, phycochrome c, was extracted from the blue-green alga Nostoc muscorum strain A. Action spectra were determined for in vitro conversions of the pigment from the short wavelength to the long wavelength form and vice versa. The action peak for the absorbance decrease at 650 nm is at 630 nm. During this decrease there is only a slight increase of the absorbance in the green region. Green and yellow light (maximum efficiency at 580 nm) completely restores absorbance at 650 nm. The observations are explained by the existence of three spectrally different forms of phycochrome c: Pc630 and Pc650 which equilibrate in darkness and Pc580 which is reversibly photoconvertible to Pc630. We have also measured the absorbance changes brought about by saturating irradiations with light of various wavelengths (“photostationary state spectrum”). Extreme photostationary states were obtained with about 650 nm and 500 nm light.  相似文献   

2.
Since akinete germination is triggered by light and the action spectrum for this process has features in common with the spectra of the two photochromic pigments, phycochromes b and d, a search was made for the presence of these phycochromes in akinetes of the blue-green alga. Anabaena variabilis Kützing. Allophycocyanin-B was also looked for, since the action spectrum for akinete germination points to a possible participation of this pigment too. Isoelectric focusing was used for purification of the pigments. The different fractions were investigated for phycochromes b and d by measuring the absorbance difference spectra: for phycochrome b. 500 nm irradiated minus 570 nm irradiated, and for phycochrome d, 650 nm irradiated minus 610 nm irradiated. For determination of allophycocyanin-B. fourth derivative analysis of absorption spectra was made for some of the fractions from the isoelectric focusing column. Phycochrome b was also assayed for by measuring in vivo absorption difference spectra. The assays were positive for all three pigments. The complete photosynthetic pigment systems were also studied by in vivo fluorescence measurements on both akinetes and vegetative cells of Anabaena variabilis. Fluorescence emission and excitation spectra at selected emission wavelengths were measured at room temperature and liquid nitrogen temperature. The energy transfer from phycoerythrocyanin to phycocyanin is very efficient under all conditions, as is the energy transfer from phycocyanin to allophycocyanin at room temperature. At low temperature, however, phycocyanin is partly decoupled from allophycocyanin, particularly in the akinetes; the energy transfer from allophycocyanin to chlorophyll a is less efficient at low temperature in both types of cells, but especially in akinetes. Delayed light emission was measured for both types of cells and found to be very weak in akinetes compared to vegetative cells. From this study it would seem that akinetes lack an active photosystem II, although the 691 nm peak in the 570 nm excited low temperature fluorescence emission spectrum proves the presence of photosystem II chlorophyll, and also its energetic connection to the phycobilisomes.  相似文献   

3.
Photochromic Pigments from Blue-Green Algae: Phycochromes a, b, and c   总被引:1,自引:0,他引:1  
Aqueous extracts of blue-green algae were fractionated by electrofocusing. In all algae investigated, fractions with iso-electric points at or near 4.6 showed photochromic behaviour analogous to that of phytochrome, although they were sensitive to light of shorter wavelength. Three main types of photochromic pigments were found: Phycochrome a (in Tolypothrix distorta, Phormidium luridum, Nostoc muscorum 1453/12, and Anacystis nidulans) has one form absorbing maximally at about 590 nm (formed under red light) and one absorbing maximally at about 630 nm (formed under green light). Phycochrome b (in Tolypothrix distorta) has one form absorbing maximally near 510 nm and one form absorbing maximally at 570 nm (formed in yellow-green and blue-green light, respectively). Phycochrome c (in Nostoc muscorum A and probably in Tolypothrix tenuis) has one form absorbing maximally at 650 nm (formed under green light) and one absorbing very weakly in the green region (formed under red light). The conversion of Phormidium phycochrome a from its red-absorbing form to its green-absorbing form causes the same spectral change as if an f-chromophore of phycocyanin were transformed into an s-chromophore. The quantum yield for this conversion is estimated to be 0.1, while the quantum yield for the reversion is estimated to be 0.4 on the assumption that the absorption coefficients are those of f- and s-chromophores. Phycochrome c is less light-sensitive than phycochromes a and b.  相似文献   

4.
Biosynthesis of chlorophyll is partly controlled by the phytochrome system. In order to study the effects of an activated phytochrome system on the protochlorophyllide (PChlide) biosynthesis without accompanying phototransformation to chlorophyll, wheat seedlings (Triticum aestivum L. cv. Starke II Weibull) were irradiated with long wavelength far-red light of low intensity. Absorption spectra were measured in vivo after different times in the far-red light or in darkness. The relationship between the different PChlide forms, the absorbance ratio 650nm636 nm changed with age in darkness, and the change was more pronounced when the leaves were grown in far-red light. Absorption spectra of dark-grown leaves always showed a maximum in the red region at 650 nm. For leaves grown in far-red light the absorption at 636 nm was high, with a maximum at the 5 day stage where it exceeded the absorption at 650 nm. At the same time there was a maximum in the total amount of PChlide accumulated in the leaves, about 30% more than in leaves grown in darkness. But the amount of the directly phototransformable PChlide, mainly PChlide650–657, was not increased. The amount of PChlide628–632, or more probably the amount of (PChlide628–632, + PChlide 636–657) was thus higher in young wheat leaves grown in far-red light than in those grown in darkness. After the 5 day stage the absorption at 636 nm relative to 650 nm decreased with age, and at the 8 day stage the spectra were almost the same in both types of leaves. Low temperature fluorescence spectra of the leaves also showed a change in the ratio between the different PChlide forms. The height of the fluorescence peak at 632 nm relative to the peak at 657 nm was higher in leaves grown in far-red light than in dark-grown leaves. – After exposure of the leaves to a light flash, the half time for the Shibata shift was measured. It increased with age both for leaves grown in darkness and in far-red light; but in older leaves grown in far-red light (7–8 days) the half time was slightly longer than in dark-grown leaves. – The chlorophyll accumulation in white light as well as the leaf unrolling were faster for leaves pre-irradiated with far-red light. The total length of the seedlings was equal or somewhat shorter in far-red light, but the length of the coleoptile was markedly reduced from 8.1 ± 0.1 cm for dark-grown seedlings to 5.2 ± 0.1 cm for seedlings grown in far-red light.  相似文献   

5.
The relationship of phototransformable protochlorophyllide to photoinactive protochlorophyllide has been studied in primary leaves of 7- to 9-day-old dark-grown bean (Phaseolus vulgaris L. var. Red Kidney) seedlings. Various levels of photoinactive protochlorophyllide, absorbing at 633 nm in vivo, were induced by administering δ-aminolevulinic acid to the leaves in darkness. Phototransformable protochlorophyllide, absorbing at 650 nm in vivo, was subsequently transformed to chlorophyllide by a light flash, and the regeneration of the photoactive pigment was followed by monitoring the absorbance increase at 650 nm in vivo. A small increase in the level of protochlorophyllide633 causes a marked increase in the extent of regeneration of protochlorphyllide650 following a flash. High levels of the inactive pigment species, however, retard the capacity to reform photoactive protochlorophyllide. A nonstoichiometric and kinetically complex decrease in absorbance at 633 nm in vivo accompanied the absorbance increase at 650 nm. The half-time for protochlorophyllide650 regeneration in control leaves was found to be three times longer than the half-time for conversion of chlorophyllide678 to chlorophyllide683 at 22 C. The results are consistent with the hypothesis that protochlorophyllide633 is a direct precursor of protochlorophyllide650 and that the protein moiety of the protochlorophyllide holochrome acts as a “photoenzyme” in the conversion of protochlorophylide to chlorophyllide.  相似文献   

6.
UVirradiation of dissolved organic carbon (DOC) in the laboratory can producesmall, labile organic compounds utilizable by microbes, but few studies haveattempted to document this process in situ. 13Cnuclear magnetic resonance (NMR) was used to examine the bulk chemicalcomposition of natural and laboratory-irradiated high-molecular-weight DOC(HMW-DOC) from shaded (150 mol m–2s–1 average light in surface water) and open (1500mol m–2 s–1) field sitesoverone and a half years. 13C NMR revealed only small differences incarbon functional groups between laboratory irradiated and non-irradiatedHMW-DOC. However, bacterial protein productivity per cell (BPP) was enhanced innaturally irradiated samples of HMW-DOC in a field mesocosm experiment (p <0.05), suggesting that bacterial growth was enhanced by photochemicalproductionof labile DOC substrates. Absorbance characteristics such as spectral slope,absorbance at 350 nm, and the absorbance ratio 250nm/365 nm revealed that HMW-DOC was photoreactive,yetno differences in these values were found between samples irradiated with andwithout UV-B. In experiments conducted with simulated solar radiation in thelaboratory and with natural light in the field mesocosm experiment, UV-A(320–400 nm) and photosynthetically active radiation (PAR;400–700 nm) were more effective than UV-B (280–320nm) in HMW-DOC photolysis.  相似文献   

7.
The effects of nano-anatase TiO2 on light absorption, distribution, and conversion, and photoreduction activities of spinach chloroplast were studied by spectroscopy. Several effects of nano-anatase TiO2 were observed: (1) the absorption peak intensity of the chloroplast was obviously increased in red and blue region, the ratio of the Soret band and Q band was higher than that of the control; (2) the great enhancement of fluorescence quantum yield near 680 nm of the chloroplast was observed, the quantum yield under excitation wavelength of 480 nm was higher than the excitation wavelength of 440 nm; (3) the excitation peak intensity near 440 and 480 nm of the chloroplast significantly rose under emission wavelength of 680 nm, and F 480 / F 440 ratio was reduced; (4) when emission wavelength was at 720 nm, the excitation peaks near 650 and 680 nm were obviously raised, and F 650 / F 680 ratio rose; (5) the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution were greatly improved, but the photoreduction activities of PSI were a little changed. Together, the studies of the experiments showed that nano-anatase TiO2 could increase absorption of light on spinach chloroplast and promote excitation energy to be absorbed by LHCII and transferred to PSII and improve excitation energy from PSI to be transferred to PSII, thus, promote the conversion from light energy to electron energy and accelerate electron transport, water photolysis, and oxygen evolution.  相似文献   

8.
Summary The pattern anomaly double abdomen was induced in embryos of Bradysia tritici (syn. Sciara ocellaris) by irradiation of the anterior egg pole with far UV (254 or 285 nm) using low UV fluences. The maximum yield of 18% of double abdomens was obtained when 2.5 h embryos were irradiated (late intravitelline cleavage stage); earlier irradiation failed to yield double abdomens, as did irradiations after the early syncytial blastoderm stage. Exposing irradiated embryos to photoreverting light (366 nm) reduced the yield of malformations. Most double abdomens were symmetrical and the number of segments ranged from 3 to 8 in each set, with the mean value at 6.4 segments.  相似文献   

9.
When 2-mm apical segments of the primary roots of Zea mays L.(cv. Golden Cross Bantam 70) were irradiated successively withred and far-red light, a photoirreversible absorbance decreasewas separated from the red far-red reversible absorbance changetypical of phytochrome. The difference spectrum of the reversiblechange showed maximum absorbance changes at 666 and 730 nm,while the photoirreversible change induced by red light showeda maximum decrease at 640 nm. The photoreversible absorbancechange was linearly proportional to the fluence of red lightbetween 1 and 6 J m–2, while the photoirreversible absorbancechange was proportional to its logarithm. Red light of approximately6 J m–2 induced 50% of the maximum photoirreversible absorbancechange at 640 nm but only about 25% of the maximum photoreversibleabsorbance change. Moreover, no effect of ascorbate on the twoabsorbance changes was observed. 1Faculty of Education, University of Yamagata, Yamagata 990,Japan. (Received November 2, 1980; )  相似文献   

10.
When 2-mm apical segments of the primary roots of Zea mays L.(cv. Golden Cross Bantam 70) were irradiated successively withred and far-red light, a photoirreversible absorbance decreasewas separated from the red far-red reversible absorbance changetypical of phytochrome. The difference spectrum of the reversiblechange showed maximum absorbance changes at 666 and 730 nm,while the photoirreversible change induced by red light showeda maximum decrease at 640 nm. The photoreversible absorbancechange was linearly proportional to the fluence of red lightbetween 1 and 6 J m–2, while the photoirreversible absorbancechange was proportional to its logarithm. Red light of approximately6 J m–2 induced 50% of the maximum photoirreversible absorbancechange at 640 nm but only about 25% of the maximum photoreversibleabsorbance change. Moreover, no effect of ascorbate on the twoabsorbance changes was observed. 1Faculty of Education, University of Yamagata, Yamagata 990,Japan. (Received November 2, 1980; )  相似文献   

11.
Summary Cationic cyanine dyes have been widely used to measure electrical potentials of red blood cells and other membrane preparations. A quantitative analysis of the binding of the most extensively studied of these dyes, diS-C3-(5), to red blood cells and their constituents is presented here. Absorption spectra were recorded for the dye in suspensions of isolated red cell membranes and in solutions of cell lysate. The dependence of the spectra on the concentrations of dye and cell constituents shows that the dye binds to these membranes as monomers with an absorbance maximum at 670 nm instead of 650 nm as for free aqueous dye and that the dye binds to oxyhaemoglobin partly as monomer but primarily as dimer, with absorbance maxima ca. 670 and 595 nm, respectively. Quantitative estimates are derived for all binding constants and extinction coefficients. These estimates are applied to suspensions of whole cells to predict the dye binding, absorbance spectra, and calibration curves of binding and fluorescencevs. membrane voltage. Satisfactory agreement is found with binding and absorbance data for whole cells at zero membrane potential and with the binding and fluorescence data reported by Hladky and Rink (J. Physiol. (London) 263:287, 1976) for cells driven to positive and negative potentials using valinomycin. The marked tendency of oxyhaemoglobin to bind dye as dimer is not shared by some other proteins tested, including deocyhaemoglobin and oxymyoglobin.  相似文献   

12.
Phycochrome b, one of the reversibly photochromic pigments found in Tolypothrix distorta seems to exist in only two forms: Pb500 and Pb570. The pigment has been spectroscopically demonstrated in vivo. It has also been separated from other pigments. Two different methods for separation have been used: isoelectric focusing and gel filtration. Preparations of purified phycobilisomes contain phycochrome b. The in vivo and in vitro absorption difference spectra were determined as well as action spectra for the conversions in vitro and in vivo of Pb500 to Pb570 and vice versa. Transformation kinetics of phycochrome b show that the conversions in both directions are initially first-order reactions.  相似文献   

13.
The afterglow (AG) band of thermoluminescence (TL) has been investigated in leaves of Arabidopsis thaliana. Excitation of dark-adapted leaves with two saturating single turn-over flashes induced the appearance of a complex TL glow curve that could be well simulated by three components: the two components, B1 and B2, of the usually called B-band, peaking at 18 and 26 °C, respectively, and a band with tmax at 41 °C, which we attributed to an AG emission. Illumination of dark-adapted leaves with 720 nm monochromatic and FR lights generated the emission of a sharp single band peaking also around at 41 °C, that it is usually assigned to an AG emission band. Dark-incubation of whole plants increased the intensity of AG-band in TL curves induced by two flashes and, in parallel, decreased B-bands. Selective illumination of leaves with light mostly absorbed by PS II (650 nm light) completely abolished the AG-band induced by two flashes, B-band being the only TL band observed. The single AG-band induced by 720 nm light was abolished if leaves were also illuminated with 650 nm light. On the other hand, AG-band could be restored if 650 nm illuminated leaves were afterwards illuminated with 720 nm light. The changes in the intensity of B and AG bands induced by selective illuminations seem to be related to alterations in the redox state of QB and plastoquinone pool.  相似文献   

14.
Light gradients were measured in leaves that had different types of anatomical development of the mesophyll but similar pigment content. Leaves of the legume, Thermopsis montana, had columnar palisade and spongy mesophyll whereas leaves of the monocot, Smilacina stellata, had spongy mesophyll only. Light gradients were measured at 550 nm in both types of leaves when they were irradiated with collimated or diffuse light. When irradiated with collimated light, light gradients were steeper in leaves with spongy mesophyll in comparison to those that had palisade tissue. On the other hand, light gradients were similar between both leaf types when they were irradiated with diffuse light. Thus, columnar palisade cells facilitated the penetration of collimated light over diffuse light. These results suggest that palisade tissue may help distribute light more uniformly to chloroplasts within the leaf. Moreover, the functional significance of palisade tissue may be related to the amount of collimated light within the natural environment.  相似文献   

15.
Photosynthesis is inhibited by heat stress. This inhibition is rapidly reversible when heat stress is moderate but irreversible at higher temperature. Absorbance changes can be used to detect a variety of biophysical parameters in intact leaves. We found that moderate heat stress caused a large reduction of the apparent absorbance of green light in light-adapted, intact Arabidopsis thaliana leaves. Three mechanisms that can affect green light absorbance of leaves, namely, zeaxanthin accumulation (absorbance peak at 505 nm), the electrochromic shift (ECS) of carotenoid absorption spectra (peak at 518 nm), and light scattering (peak at 535 nm) were investigated. The change of green light absorbance caused by heat treatment was not caused by changes of zeaxanthin content nor by the ECS. The formation of non-photochemical quenching (NPQ), chloroplast movements, and chloroplast swelling and shrinkage can all affect light scattering inside leaves. The formation of NPQ under high temperature was not well correlated with the heat-induced absorbance change, and light microscopy revealed no appreciable changes of chloroplast location because of heat treatment. Transmission electron microscopy results showed swollen chloroplasts and increased number of plastoglobules in heat-treated leaves, indicating that the structural changes of chloroplasts and thylakoids are significant results of moderate heat stress and may explain the reduced apparent absorbance of green light under moderately high temperature.  相似文献   

16.
Influence of high intensive flashes on the yield of free radicals in intact seeds and excised embryonic axis, endosperm, and seed coat, and its resulting effect on seedling growth, total biomass production and phosphorus metabolism in wheat (Triticum aeativum), vetch (Vicia sativa L.) and onion (Allium cepa L.) was studied. Free radicals (f.r.) were formed mainly in seed coat and not in the endosperm. Vetch seeds after irradiation had 20.76 X 1013 f.r. g-1 dry intact seed and 17.30 X 1013 f.r. g-1 dry seed coat. Excised seed coats exposed to irradiation also yielded 17.28 × 1013 f.r. g-1 dry matter. High irradiance “white light” flashes induced more f.r. than a monochromatic one of the same photon content. Red (650 nm), farred (750 nm) and even infra-red (1100 nm) radiation did not initiated f.r. formation but resulted in their decay in samples irradiated earlier by “white”, blue and green parts of the spectrum. Blue irradiation of seeds led to the decrease in the length of shoots and roots in comparison to “white”, green and red irradiation but their biomass increased faster than in the seedlings obtained from non-irradiated or irradiated with “white” and green radiation. The quantity of total acid soluble phosphorus followed a sequence with respect to wavelength of radiation: 436 nm > 650 nm> > 540 nm > non-irradiated > 300–800 nm. Quantity of inorganic phosphorus remained unaffected by different spectral character of radiation. The quantity of organic acid soluble nucleic phosphorus and acid insoluble polyphosphates was higher in samples irradiated with red beams (650 ± 6 nm).  相似文献   

17.
A photoactive substrate-enzyme complex of the NADPH:protochlorophyllide oxidoreductase (POR; EC 1. 3. 1. 33) was purified from etiolated Triticum aestivum L. by gel chromatography after solubilization of prolamellar bodies by dodecyl-maltoside. Irradiation by a 1-ms flash induced the phototransformation of protocholorophyllide a (Pchlide) with −196 °C absorbance and emission maxima at 640 and 643 nm, respectively. The apparent molecular weight of this complex was 112 ± 24 kDa, which indicates aggregation of enzyme subunits. By lowering the detergent concentration in the elution buffer, a 1080 ± 250-kDa particle was obtained which displayed the spectral properties of the predominant form of photoactive Pchlide in vivo (−196 °C absorbance and fluorescence maxima at 650 and 653 nm). In this complex, POR was the dominant polypeptide. Gel chromatography in the same conditions of an irradiated sample of solubilized prolamellar bodies indicated rapid disaggregation of the complex after Pchlide phototransformation. High performance liquid chromatographic analysis of the POR complexes obtained using two detergent concentrations indicates a possible association of zeaxanthin and violaxanthin with the photoactive complex. Received: 25 February 1998 / Accepted: 8 June 1998  相似文献   

18.
We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV‐induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut‐offs from 280 to 382 nm, against a background of non‐saturating visible light. When the abaxial surface was irradiated, Pn averaged 4.6% higher with the UV supplement that cut‐off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV‐induced blue fluorescence, we measured the UV‐induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut‐off filter, thereby estimating the potential contribution of UV‐induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non‐saturating visible background, we estimate that the absorption of UV‐induced blue fluorescence and the direct absorption of UV by photosynthetic pigments maximally enhanced photosynthesis by about 1% each with the UV supplement that cut‐off UV at 311 nm. We suggest that a portion of the incident UV on the S. bicolor leaves was used to drive photosynthesis.  相似文献   

19.
Yorinao Inoue  Kazuo Shibata 《Planta》1973,114(4):341-358
Summary A new combination technique of using both dual-wavelength and opalglas methods for scanning translucent biological samples was applied to leaves of terrestrial plants in order to observe their absorption changes by irradiation and the action spectra for the absorption changes. The measurements of true absorption, free from various effects of scattering, by this technique showed an increase of absorption by weak blue light and a decrease of absorption by strong blue light for almost all of the leaves of 20 plant species examined. These weak- and strong-light responses in absorption were reversible. The fractional increase and decrease of absorbance at 678 nm by weak and strong light were highest, +20% and -31%, for leaves of Begonia semperflorens Link et Otto, and +12% and -13% for leaves of foxtail, Setaria viridis (L.) Beauv., the species examined in further experiments. The response to strong light proceeded to completion earlier than did that to weak light. The strong-light response could be observed separately from the weak-light response by using a leaf pre-irradiated with weak blue light. The responses were measured as a function of light intensity by scanning a single leaf irradiated locally at different intensities, and the action spectra for these responses were measured by scanning a leaf irradiated locally at different wavelengths but at identical intensities. The action spectra for these opposite responses were similar, and showed a band at 450 nm with shoulders but no band in the red region. Microscopic observations of chloroplasts in leaves during irradiation indicated that these changes in absorption are mostly due to rearrangements of chloroplasts in cells caused by irradiation.  相似文献   

20.
Light-Induced Absorption Changes in Etiolated Coleoptiles   总被引:1,自引:0,他引:1  
Blue (or green) light induced reversible and irreversible absorption changes in etiolated wheat (Triticum aestivum) coleoptiles. Immediately after a 10 s pulse of blue light there was an absorbance increase at 440 nm and a decrease at 420 nm. The absorbance at 440 nm returned to the original level in a biphasic way, with first-order rate constants of 0.05 s?1 and 0.006 s?1 at 25°C. The change at 440 nm was partly, but not completely, inhibited by iodide. In the 500–600 nm region complex changes occurred, indicating the participation of at least two different cytochromes, one of which was oxidized during a 10 s light pulse and the other oxidized more slowly during the following dark period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号