首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inevitable glutathione,then and now   总被引:6,自引:0,他引:6  
Glutathione a predominant tripeptide thiol compound of many prokaryotes and eukaryotes, is synthesized from its precursor amino acids eg. gamma-glutamate, cysteine and glycine. It is mainly involved in detoxication mechanisms through conjugation reactions. Other functions include thiol transfer, destruction of free radicals and metabolism of various exogenous and endogenous compounds. It becomes mandatory for a cell to manage high concentration of intracellular GSH to protect itself from chemical/dug abuse. Glutathione dependent enzymes viz: glutathione-S-transferases, glutathione peroxidase, glutathione reductase and gamma-glutamate transpeptidase facilitate protective manifestations. Liver serves as a glutathione-generating factor which supplies the kidney and intestine with other constituents of glutathione resynthesis. The principal mechanism of hepatocyte glutathione turnover appears to be cellular efflux. Kidney too plays an important role in organismic GSH homeostasis. Role of GSH in organs like lung, intestine and brain has recently been described. GSH involvement in programmed cell death has also been indicated. Immense interest makes the then "thee glutathione" as "inevitable glutathione". This article describes the role of this vital molecule in cell physiology and detoxication mechanisms in particular.  相似文献   

2.
Red cell peroxide metabolism in diabetes mellitus   总被引:2,自引:0,他引:2  
In a group of normal controls and in a group of diabetics subdivided for type we evaluated the following red blood cell parameters: superoxide dismutase (SOD), glutathione peroxidase (GSH.Px), catalase (C-ase), glutathione content (GSH) and membrane-protein-sulphydryl groups (P-SH). There was no difference in the enzymatic activities of superoxide dismutase, glutathione peroxidase and catalase in normals and in the diabetics. However, the erythrocyte GSH content as well as membrane P-SH groups discriminate the normals from diabetics and also the diabetics subdivided for type. None of these parameters was related to the erythrocyte filterability considered as a reflection of the red blood cell deformability. These findings reveal that the diabetic red blood cell is less protected from oxidant agents.  相似文献   

3.
Differential centrifugation and isopycnic equilibration in density gradients were used to localize glutathione (GSH), glutathione peroxidase and glutathione reductase in the subcellular organelles of WI-38 fibroblasts. GSH was present in all the subcellular fractions, whereas the glutathione peroxidase and reductase activities were restrained to the cytoplasm and the mitochondrial fractions. After equilibration in density gradients, the results showed the presence of GSH, glutathione peroxidase and glutathione reductase in both the cytoplasm and mitochondria. GSH was also located in plasma membranes and probably in peroxisomes, endoplasmic reticulum and lysosomal membranes. Evolution of GSH in ageing fibroblasts showed a sudden increase of its concentration just before cell death. The glutathione peroxidase activity already decreases in the early passages, while the decrease of the glutathione reductase activity was constant and reached a drastic low level at the end of the culture. In conclusion, GSH is probably involved in the cell degeneration associated with ageing but because of its multiple functions and its ubiquitous localization, it is difficult to assert to which extent this metabolite is implicated in the ageing process.  相似文献   

4.
Inhibition of glutathione disulfide reductase by glutathione   总被引:2,自引:0,他引:2  
Rat-liver glutathione disulfide reductase is significantly inhibited by physiological concentrations of the product, glutathione. GSH is a noncompetitive inhibitor against GSSG and an uncompetitive inhibitor against NADPH at saturating concentrations of the fixed substrate. In both cases, the inhibition by GSH is parabolic, consistent with the requirement for 2 eq. of GSH in the reverse reaction. The inhibition of GSSG reduction by physiological levels of the product, GSH, would result in a significantly more oxidizing intracellular environment than would be realized in the absence of inhibition. Considering inhibition by the high intracellular concentration of GSH, the steady-state concentration of GSSG required to maintain a basal glutathione peroxidase flux of 300 nmol/min/g in rat liver is estimated at 8-9 microM, about 1000-fold higher than the concentration of GSSG predicted from the equilibrium constant for glutathione reductase. The kinetic properties of glutathione reductase also provide a rationale for the increased glutathione (GSSG) efflux observed when cells are exposed to oxidative stress. The resulting decrease in intracellular GSH relieves the noncompetitive inhibition of glutathione reductase and results in an increased capacity (Vmax) and decreased Km for GSSG.  相似文献   

5.
Although inhibition of glutathione reductase (GR) has been demonstrated to cause a decrease in reduced glutathione (GSH) and increase in glutathione disulfide (GSSG), a systematic study of the effects of GR inhibition on thiol redox state and related systems has not been noted. By employing a monkey kidney cell line as the cell model and 2-acetylamino-3-[4-(2-acetylamino-2-carboxy-ethylsulfanylthio carbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) as a GR inhibitor, an investigation of the effects of GR inhibition on cellular thiol redox state and related systems was conducted. Our study demonstrated that, in addition to a decrease in GSH and increase in GSSG, 2-AAPA increased the ratios of NADH/NAD+ and NADPH/NADP+. Significant protein glutathionylation was observed. However, the inhibition did not affect the formation of reactive oxygen species or expression of antioxidant defense enzyme systems [GR, glutathione peroxidase, catalase, and superoxide dismutase] and enzymes involved in GSH biosynthesis [γ-glutamylcysteine synthetase and glutathione synthetase].  相似文献   

6.
Under the chromatographic conditions used in these studies we observed time- and concentration-dependent formation of N-1-Deoxy-fructos-1-yl glutathione as the major glycation product formed in the mixtures of GSH with glucose. N-1-Deoxy-fructos-1-yl glutathione had a characteristic positively charged ion with m/z=470 Th in its LC-MS spectra. Mixtures of glutathione disulfide and glucose generated two compounds: N-1-Deoxy-fructos-1-yl GSSG (m/z=775 Th) as major adduct and bis di-N, N'-1-Deoxy-fructos-1-yl GSSG (m/z=937 Th) as the minor one. All three compounds showed a resonance signal at 55.2 ppm in the 13C-NMR spectra as C1 methylene group of deoxyfructosyl, which represents direct evidence that they are Amadori compounds. All three compounds purified from GSSG/Glc or GSH/Glc mixtures also showed LC-MS/MS fragmentation patterns identical to those of the synthetically synthesized N-1-Deoxy-fructos-1-yl glutathione, N-1-Deoxy-fructos-1-yl GSSG and bis di-N, N'-1-Deoxy-fructos-1-yl GSSG. N-1-Deoxy-fructos-1-yl glutathione was shown to be a poor substrate for glutathione peroxidase (6.7% of the enzyme's original specific activity) and glutathione-S-transferase (25.7% of the original enzyme's specific activity). Glutathione reductase failed to recycle the disulfide bond within the structure of di-substituted bis di-N, N'-1-Deoxy-fructos-1-yl GSSG. It showed only 1% of the original enzyme's specific activity, but retained its ability to reduce the disulfide bond within the structure of N-1-Deoxy-fructos-1-yl GSSG by 57% of its original specific activity. Since the GSH concentration in diabetic lens is significantly decreased and the glucose concentration can increase 10-fold and higher, the formation of Amadori products of the different forms of glutathione with this monosaccharide may be favored under these conditions and could contribute to a lowering of glutathione levels and an increase of oxidative stress observed in diabetic lens.  相似文献   

7.
GSH is rapidly oxidized by HOCl (hypochlorous acid), which is produced physiologically by the neutrophil enzyme myeloperoxidase. It is converted into, mainly, oxidized glutathione. Glutathione sulfonamide is an additional product that is proposed to be covalently bonded between the cysteinyl thiol and amino group of the gamma-glutamyl residue of GSH. We have developed a sensitive liquid chromatography-tandem MS assay for the detection and quantification of glutathione sulfonamide as well as GSH and GSSG. The assay was used to determine whether glutathione sulfonamide is a major product of the reaction between GSH and HOCl, and whether it is formed by other two-electron oxidants. At sub-stoichiometric ratios of HOCl to GSH, glutathione sulfonamide accounted for up to 32% of the GSH that was oxidized. It was also formed when HOCl was generated by myeloperoxidase and its yield increased with the flux of oxidant. Of the other oxidants tested, only hypobromous acid and peroxynitrite produced substantial amounts of glutathione sulfonamide, but much less than with HOCl. Chloramines were able to generate detectable levels only when at a stoichiometric excess over GSH. We conclude that glutathione sulfonamide is sufficiently selective for HOCl to be useful as a biomarker for myeloperoxidase activity in biological systems. We have also identified a novel oxidation product of GSH with a molecular weight two mass units less than GSH, which we have consequently named dehydroglutathione. Dehydroglutathione represented a few percent of the total products and was formed with all of the oxidants except H2O2.  相似文献   

8.
The changes of ascorbic acid, dehydroascorbic acid, and glutathione content and related enzyme activities were studied in apple buds during dormancy and thidiazuron-induced bud break. An increase in ascorbic acid, reduced form of glutathione (GSH), total glutathione, total non-protein thiol (NPSH) and non-glutathione thiol (RSH) occurred as a result of induction by thidiazuron during bud break, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased during the same period. Thidiazuron also enhanced the ratio of GSH/GSSG, and activities of ascorbate free radical reductase (AFR; EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11). dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2). The ascorbic acid content and the activities of AFR, ascorbate peroxidase, and DHAR peaked when buds were in the side green or green tip stage just prior to the start of rapid expansion, and declined thereafter. The GSH, NPSH, RSH, ratio of GSH/GSSG, and activities of GR increased steadily during bud development.  相似文献   

9.
Nitrosobenzene (NOB) formed acid labile conjugates with reduced glutathione (GSH) and hemoglobin within red cells. In vitro, NOB rapidly reacted with GSH with formation of phenylhydroxylamine (PH), oxidized glutathione (GSSG), and a water-soluble compound identified as glutathionesulfinanilide (GSO-AN). Free aniline (AN), aminophenols and azoxybenzene were not detected. The proportion of PH formed increased with increasing GSH concentration and at higher pH values. Spectroscopic analysis revealed the formation of a labile adduct following a second order reaction (K = 5 x 10(3) M-1 . sec-1 at pH 7.4 and 37 degrees). This reaction was reversible because nearly all NOB could be extracted with ether from the labile intermediate. On the other hand, the labile intermediate was transformed into GSO-AN (with increasing rate at lower pH values) or it was cleaved by GSH with formation of GSSG and PH. Intermediate formation of NOB and thiol radicals was ruled out by analysis of the equilibrium data. A tentative scheme is presented for the proposed reaction mechanism.  相似文献   

10.
We investigated the role of the glutathione redox cycle in endothelial cell injury induced by 15(S)-hydroperoxyeicosatetraenoic acid (15-HPETE), an arachidonate lipoxygenase product. Pretreatment of endothelial monolayers with reduced glutathione (GSH) markedly suppressed 15-HPETE-induced cellular injury, which was determined by the 51Cr-release assay. 15-HPETE-induced cytotoxicity was modified by several GSH-modulating agents such as buthionine sulfoximine and 2-oxothiazolidine-4-carboxylate, indicating that this cyto-protective action of GSH was correlated with the intracellular GSH level. These GSH-modulating agents also modified the conversion of 15-HPETE to 15(S)-hydroxyeicosatetraenoic acid by endothelial cells. On the other hand, the exposure of endothelial cell monolayers to 15-HPETE did not deplete intracellular GSH levels but decreased GSH peroxidase activity. In addition, sodium selenite and ebselen, a stimulator and mimic of GSH peroxidase activity, respectively, displayed remarkable protective effects against 15-HPETE-induced cytotoxicity. These results suggest that intracellular GSH plays a pivotal role in the protection against 15-HPETE-induced endothelial cell injury, and that the decreased activity of GSH peroxidase activity is involved in 15-HPETE-induced cytotoxicity.  相似文献   

11.
Liu L  Mao SZ  Liu XM  Huang X  Xu JY  Liu JQ  Luo GM  Shen JC 《Biomacromolecules》2008,9(1):363-368
For imitating the active site of antioxidant selenoenzyme glutathione peroxidase (GPx), an artificial enzyme selenosubtilisin was employed as a scaffold for reconstructing substrate glutathione (GSH) specific binding sites by a bioimprinting strategy. GSH was first covalently linked to selenosubtilisin to form a covalent complex GSH-selenosubtilisin through a Se-S bond, then the GSH molecule was used as a template to cast a complementary binding site for substrate GSH recognition. The bioimprinting procedure consists of unfolding the conformation of selenosubtilisin and fixing the new conformation of the complex GSH-selenosubtilisin. Thus a new specificity for naturally occurring GPx substrate GSH was obtained. This bioimprinting procedure facilitates the catalytic selenium moiety of the imprinted selenosubtilisin to match the reactive thiol group of GSH in the GSH binding site, which contributes to acceleration of the intramolecular catalysis. These imprinted selenium-containing proteins exhibited remarkable rate enhancement for the reduction of H2O2 by GSH. The average GPx activity was found to be 462 U/micromol, and it was approximately 100 times that for unimprinted selenosubtilisin. Compared with ebselen, a well-known GPx mimic, an activity enhancement of 500-fold was observed. Detailed steady-state kinetic studies demonstrated that the novel selenoenzyme followed a ping-pong mechanism similar to the naturally occurring GPx.  相似文献   

12.
A high Cd-tolerant dark septate endophyte (DSE), Exophiala pisciphila, was inoculated into maize (Zea mays L.) roots under Cd stress. The Cd content, enzymes activity and thiol compound content relevant to glutathione (GSH) metabolism in maize leaves were analyzed. The Cd content in maize shoots increased with increasing Cd stress, but the DSE significantly reduced the Cd content at the 40?mg/kg Cd treatment. Cd stress increased the enzyme activity of glutathione reductase (GR), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) as well as the thiol compound contents of sulfur, thiols (-SH) and oxidized glutathione (GSSG). The content of reduced GSH and the GSH/GSSG ratio reached a peak at the 5?mg/kg Cd treatment but then decreased with increasing Cd stress. Furthermore, the DSE significantly enhanced the GR and GSH-Px activity and increased the contents of -SH and GSH under low Cd stress (5 and 10?mg/kg), but decreased the γ-glutamylcysteine synthetase and GST activity under high Cd stress (20 and 40?mg/kg). Highly positive correlations between the Cd content with enzymes activity and enzymes activity with thiol compound content were observed. Results indicated that DSE played a role in activating GSH metabolism in maize leaves under Cd stress.  相似文献   

13.
4-Hydroxy-2,3-trans-nonenal, a lipid peroxidation product, inhibits glutathione peroxidase in a concentration-dependent manner. The concentration providing 50% inhibition is 0.12 mM. This inhibition can be almost completely (89%) prevented by 1 mM glutathione added to the incubation mixture 30 min before 4-hydroxy-2,3-trans-nonenal or 2,3-trans-nonenal, but not by other thiol-containing antioxidants such as 0.5 mM dithiothreitol or beta-mercaptoethanol. Again the addition of 1 mM glutathione, and not of 0.5 mM dithiothreitol or beta-mercaptoethanol, to the enzyme 30 min after incubation with 4-hydroxy-2,3-trans-nonenal restores activity to the same extent as does the preincubation with GSH. In view of the known reactivity of 4-hydroxy-2,3-trans-nonenal with lysine residues and the reversibility of the inhibition, the involvement of a lysine residue in GSH binding to glutathione peroxidase is proposed. The potential relevance of the inhibition of glutathione peroxidase by 4-hydroxy-nonenal to oxidative tissue damage is discussed with particular emphasis on neurological disorders.  相似文献   

14.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

15.
The uptake of alpha-methyl-D-glucoside by slices of renal cortex was compared in normal and alloxan diabetic rabbits. Alloxanized rabbit tissue showed significantly higher levels of sugar accumulation than normal tissue. Diamide, which is known to oxidize intracellular glutathione (GSH), inhibited the uptake of alpha-methyl-D-glucoside by renal cortical slices. GSH stimulated sugar uptake and was also capable of reversing the inhibition of sugar accumulation caused by diamide. Mercaptoethanol and dithiothreitol, which are commonly used thiol compounds, were not as effective as GSH in stimulating sugar uptake. The level of GSH found in normal and alloxan diabetics rabbit kidneys shows a slightly decreased cortical GSH content in alloxanized animals. One can conclude that GSH participates in sugar uptake in kidney slices from both diabetic and normal rabbits.  相似文献   

16.
  • Aquatic macrophytes are potentially useful for phytoremediation programmes in environments contaminated by arsenic (As). Biochemical and physiological modification analyses in different plant parts are important to understand As tolerance mechanisms.
  • The objective was to evaluate glutathione metabolism in leaves and roots of Eichhornia crassipes (Mart.) Solms treated to As. Specimens of E. crassipes were cultured for 3 days in Clark's nutrient solution containing 7 μm As. The enzymes ATP sulphurylase (ATPS), glutathione reductase (GR), glutathione peroxidase (GSH‐Px), glutathione sulphotransferase (GST) and γ‐glutamylcysteine synthetase (γ‐ECS) activity, glutathione content, total protein and non‐protein thiols were evaluated.
  • The ATPS activity increased in roots. GR activity in leaves and GSH‐Px in roots were lower. GST activity was higher in roots and lower in leaves, and γ‐ECS activity was higher in leaves. Glutathione levels were lower, total thiol levels were higher and non‐protein levels did not change in E. crassipes leaves and roots. Exposure to As increased enzyme activity involved with sulphur metabolism, such as ATPS. Higher GR activity and lower GSH‐Px indicate increased glutathione conjugation to As due to increased GSH availability. The higher GST activity indicates its participation in As detoxification and accumulation through As GSH conjugation. Changes in glutathione and thiol levels suggest high phytochelatin synthesis.
  • In conclusion, the increments in ATPS, GR, GST and γ‐ECS activity indicate that these enzymes are involved in GSH metabolism and are part of the E. crassipes As detoxification mechanism.
  相似文献   

17.
Since the enhancement of the activity of the natural glutathione (GSH)-dependent antioxidant protective system of the epidermal cells appears to inhibit the oxidative challenge presumably linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA), we have compared the effectiveness of diverse intracellular thiol delivery agents as inhibitors of the effects of TPA on GSH metabolism and ornithine decarboxylase (ODC; L-ornithine carboxylase, EC 4.1.1.17) induction in isolated mouse epidermal cells. Here we report at a 2-mM concentration, the monoethyl and monomethyl esters of GSH, N-acetyl-L-cysteine, and L-2-oxothiazolidine-4-carboxylate are all significantly more effective than GSH in inhibiting the sharp decline in the intracellular ratio of reduced GSH/oxidized glutathione (GSSG), the prolonged decrease in GSH peroxidase (GSH:H2O2 oxidoreductase, EC 1.11.1.9) activity, and the induction of ODC activity caused by 1 microM TPA. Moreover, diethyldithiocarbamate prevents totally the initial drop in the GSH/GSSG ratio of TPA-treated cells and is the most potent inhibitor of TPA-decreased GSH peroxidase activity in relation with its remarkable 98% inhibition of TPA-induced ODC activity, suggesting that the potential antitumor-promoting activity of this compound in mouse skin may be far superior to that previously demonstrated by GSH in the initiation-promotion protocol.  相似文献   

18.
1. Changes in liver glutathione reductase and glutathione peroxidase activities in relation to age and sex of rats were measured. Oxidation of GSH was correlated with glutathione peroxidase activity. 2. Glutathione reductase activity in foetal rat liver was about 65% of the adult value. It increased to a value slightly higher than the adult one at about 2-3 days, decreased until about 16 days and then rose after weaning to a maximum at about 31 days, finally reaching adult values at about 45 days old. 3. Weaning rats on to an artificial rat-milk diet prevented the rise in glutathione reductase activity associated with weaning on to the usual diet high in carbohydrate. 4. In male rats glutathione peroxidase activity in the liver increased steadily up to adult values. There were no differences between male and female rats until sexual maturity, when, in females, the activity increased abruptly to an adult value that was about 80% higher than that in males. 5. The rate of GSH oxidation in rat liver homogenates increased steadily from 3 days until maturity, when the rate of oxidation was about 50% higher in female than in male liver. 6. In the liver a positive correlation between glutathione peroxidase activity and GSH oxidation was found. 7. It is suggested that the coupled oxidation-reduction through glutathione reductase and glutathione peroxidase is important for determining the redox state of glutathione and of NADP, and also for controlling the degradation of hydroperoxides. 8. Changes in glutathione reductase and glutathione peroxidase activities are discussed in relation to the redox state of glutathione and NADP and to their effects on the concentration of free CoA in rat liver and its possible action on ketogenesis and lipogenesis.  相似文献   

19.
Glutathione (GSH) was oxidized to GSSG in the presence of H2O2, tyrosine, and peroxidase. During the GSH oxidation catalyzed by lactoperoxidase, O2 was consumed and the formation of glutathione free radical was confirmed by ESR of its 5,5'-dimethyl-1-pyrroline-N-oxide adduct. When lactoperoxidase was replaced by thyroid peroxidase in the reaction system, the consumption of O2 and the formation of the free radical became negligibly small. These results led us to conclude that, in the presence of H2O2 and tyrosine, lactoperoxidase and thyroid peroxidase caused the one-electron and two-electron oxidations of GSH, respectively. It was assumed that GSH is oxidized by primary oxidation products of tyrosine, which are phenoxyl free radicals in lactoperoxidase reactions and phenoxyl cations in thyroid peroxidase reactions. When tyrosine was replaced by diiodotyrosine or 2,6-dichlorophenol, the difference in the mechanism between lactoperoxidase and thyroid peroxidase disappeared and both caused the one-electron oxidation of GSH. Iodides also served as an effective mediator of GSH oxidation coupled with the peroxidase reactions. In this case the two peroxidases both caused the two-electron oxidation of GSH.  相似文献   

20.
The kinetic parameters of the redox transitions subsequent to the two-electron transfer implied in the glutathione (GSH) reductive addition to 2- and 6-hydroxymethyl-1,4-naphthoquinone bioalkylating agents were examined in terms of autoxidation, GSH consumption in the arylation reaction, oxidation of the thiol to glutathione disulfide (GSSG), and free radical formation detected by the spin-trapping electron spin resonance method. The position of the hydroxymethyl substituent in either the benzenoid or the quinonoid ring differentially influenced the initial rates of hydroquinone autoxidation as well as thiol oxidation. Thus, GSSG- and hydrogen peroxide formation during the GSH reductive addition to 6-hydroxymethyl-1,4-naphthoquinone proceeded at rates substantially higher than those observed with the 2-hydroxymethyl derivative. The distribution and concentration of molecular end products, however, was the same for both quinones, regardless of the position of the hydroxymethyl substituent. The [O2]consumed/[GSSG]formed ratio was above unity in both cases, thus indicating the occurrence of autoxidation reactions other than those involved during GSSG formation. EPR studies using the spin probe 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) suggested that the oxidation of GSH coupled to the above redox transitions involved the formation of radicals of differing structure, such as hydroxyl and thiyl radicals. These were identified as the corresponding DMPO adducts. The detection of either DMPO adduct depended on the concentration of GSH in the reaction mixture: the hydroxyl radical adduct of DMPO prevailed at low GSH concentrations, whereas the thiyl radical adduct of DMPO prevailed at high GSH concentrations. The production of the former adduct was sensitive to catalase, whereas that of the latter was sensitive to superoxide dismutase as well as to catalase. The relevance of free radical formation coupled to thiol oxidation is discussed in terms of the thermodynamic and kinetic properties of the reactions involved as well as in terms of potential implications in quinone cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号