首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of two essential residues at the N-terminal hook region of neuronal nitric-oxide synthase (nNOS) in nitric-oxide synthase activity was investigated. Full-length mouse nNOS proteins containing single-point mutations of Thr-315 and Asp-314 to alanine were produced in the Escherichia coli and baculovirus-insect cell expression systems. The molecular properties of the mutant proteins were analyzed in detail by biochemical, optical, and electron paramagnetic resonance spectroscopic techniques and compared with those of the wild-type enzyme. Replacement of Asp-314 by Ala altered the geometry around the heme site and the substrate-binding pocket of the heme domain and abrogated the ability of nNOS to form catalytically active dimers. Replacement of Thr-315 by Ala reduced the protein stability and altered the geometry around the heme site, especially in the absence of bound (6R)-5,6,7, 8-tetrahydro-L-biopterin cofactor. These results suggest that Asp-314 and Thr-315 both play critical structural roles in stabilizing the heme domain and subunit interactions in mouse nNOS.  相似文献   

2.
Mouse neuronal nitric-oxide synthase 2 (nNOS2) is a unique natural variant of constitutive neuronal nitric-oxide synthase (nNOS) specifically expressed in the central nervous system having a 105-amino acid deletion in the heme-binding domain as a result of in-frame mutation by specific alternative splicing. The mouse nNOS2 cDNA gene was heterologously expressed in Escherichia coli, and the resultant product was characterized spectroscopically in detail. Purified recombinant nNOS2 contained heme but showed no L-arginine- and NADPH-dependent citrulline-forming activity in the presence of Ca2+-promoted calmodulin, elicited a sharp electron paramagnetic resonance (EPR) signal at g = 6.0 indicating the presence of a high spin ferriheme as isolated and showed a peak at around 420 nm in the CO difference spectrum, instead of a 443-nm peak detected with the recombinant wild-type nNOS1 enzyme. Thus, although the heme domain of nNOS2 is capable of binding heme, the heme coordination geometry is highly abnormal in that it probably has a proximal non-cysteine thiolate ligand both in the ferric and ferrous states. Moreover, negligible spectral perturbation of the nNOS2 ferriheme was detected upon addition of either L-arginine or imidazole. These provide a possible rational explanation for the inability of nNOS2 to catalyze the cytochrome P450-type monooxygenase reaction.  相似文献   

3.
N(G)-Amino-l-arginine, N(5)-(1-iminoethyl)-l-ornithine, N(6)-(1-iminoethyl)-l-lysine, and aminoguanidine were studied for the mechanisms by which they produce suicidal inactivation of the neuronal nitric oxide synthase isoform (nNOS). All of the inactivators that were amino acid structural analogs targeted the heme residue at the nNOS active site and led to its destruction as evidenced by the time- and concentration-dependent loss of the nNOS heme fluorescence, which reflects the disruption of the protoporphyrin-conjugated structure. The loss of heme was exclusively associated with the dimeric population of the nNOS. This inactivator-mediated loss of the nNOS heme never reached more than 60%, suggesting that only half of the dimeric heme is involved in catalytic activation of mechanism-based inactivators studied. Aminoguanidine-induced nNOS inactivation produced covalent modification of the nNOS protein chain with a stoichiometry of 0.8 mol of aminoguanidine per mole of the nNOS monomer. Specific covalent modification by aminoguanidine was exclusively associated with the oxygenase domain of the nNOS. The mechanisms by which N(6)-(1-iminoethyl)-l-lysine and aminoguanidine inactivate the nNOS and iNOS do not differ between the isoforms. The selectivity of these inactivators toward the iNOS isoform is a reflection of their much lower partition ratios, which were determined to be 0.16 +/- 0. 1 for N(6)-(1-iminoethyl)-l-lysine and 12 +/- 1.5 for aminoguanidine in case of the iNOS isoform while the same inactivators produced the partition ratios of 17 +/- 2 and 206 +/- 4, respectively, for the nNOS isoform.  相似文献   

4.
Phung YT  Black SM 《IUBMB life》1999,48(3):333-338
Because the functional form of neuronal nitric-oxide synthase (nNOS) is a homodimer, we investigated whether we could disrupt dimer formation with inactive nNOS chimeras acting as dominant negative mutants. To test this hypothesis, we either expressed the heme and reductase regions of rat nNOS as single domains or produced fusion proteins between the rat nNOS heme domain and various other electron-shuttling proteins. A dominant negative potential of these constructs was demonstrated by their ability to reduce NOS activity when transfected into a cell line stably expressing rat nNOS. In the presence of these nNOS mutant proteins, cellular levels of inactive nNOS monomers were significantly increased, indicating that their mechanism of action is through the disruption of nNOS dimer formation. These dominant negative mutants should prove valuable in analyzing the role of nNOS in biological systems.  相似文献   

5.
Guanabenz, a metabolism-based irreversible inactivator of neuronal nitric-oxide synthase (nNOS) in vitro, causes the loss of immunodetectable nNOS in vivo. This process is selective in that the slowly reversible inhibitor N(G)-nitro-L-arginine did not decrease the levels of nNOS in vivo. To better understand the mechanism for the loss of nNOS protein in vivo, we have investigated the effects of guanabenz and N(G)-nitro-L-arginine in HEK 293 cells stably transfected with the enzyme. We show here that guanabenz, but not N(G)-nitro-L-arginine, caused the inactivation and loss of nNOS protein in the HEK 293 cells. In studies with cycloheximide or in pulse-chase experiments with [(35)S]methionine, we demonstrate that the loss of nNOS was due in large part to enhanced proteolysis of the protein with the half-life decreasing by one-half from 20 to 10 h. Other metabolism-based irreversible inactivators to nNOS, N(G)-methyl-L-arginine, and N(5)-(1-iminoethyl)-L-ornithine, but not the reversible inhibitor 7-nitroindazole (7-NI), caused a similar decrease in the half-life of nNOS. Proteasomal inhibitors, lactacystin, Cbz-leucine-leucine-leucinal, and N-acetyl-leucine-leucine-norleucinal, but not the lysosomal protease inhibitor leupeptin, were found to effectively inhibit the proteolytic degradation of nNOS. Thus we have shown for the first time that the irreversible inactivators of nNOS, perhaps through covalent alteration of the enzyme, enhance the proteolytic turnover of the enzyme by a mechanism involving the proteasome.  相似文献   

6.
It is established that suicide inactivation of neuronal nitric-oxide synthase (nNOS) by drugs and other xenobiotics leads to ubiquitination and proteasomal degradation of the enzyme. The exact mechanism is not known, although it is widely thought that the covalent alteration of the active site during inactivation triggers the degradation. A mechanism that involves recognition of the altered nNOS by Hsp70 and its cochaperone CHIP, an E3-ubiquitin ligase, has been proposed. To further address how alterations of the active site trigger ubiquitination of nNOS, we examined a C331A nNOS mutant, which was reported to have impaired ability to bind l-arginine and tetrahydrobiopterin. We show here that C331A nNOS is highly susceptible to ubiquitination by a purified system containing ubiquitinating enzymes and chaperones, by the endogenous ubiquitinating system in reticulocyte lysate fraction II, and by intact HEK293 cells. The involvement of the altered heme cleft in regulating ubiquitination is confirmed by the finding that the slowly reversible inhibitor of nNOS, NG-nitro-l-arginine, but not its inactive d-isomer, protects the C331A nNOS from ubiquitination in all these experimental systems. We also show that both Hsp70 and CHIP play a major role in the ubiquitination of C331A nNOS, although Hsp90 protects from ubiquitination. Thus, these studies further strengthen the link between the mobility of the substrate-binding cleft and chaperone-dependent ubiquitination of nNOS. These results support a general model of chaperone-mediated protein quality control and lead to a novel mechanism for substrate stabilization based on nNOS interaction with the chaperone machinery.  相似文献   

7.
In neuronal nitric-oxide synthase (nNOS), calmodulin (CaM) binding is thought to trigger electron transfer from the reductase domain to the heme domain, which is essential for O(2) activation and NO formation. To elucidate the electron-transfer mechanism, we characterized a series of heterodimers consisting of one full-length nNOS subunit and one oxygenase-domain subunit. The results support an inter-subunit electron-transfer mechanism for the wild type nNOS, in that electrons for catalysis transfer in a Ca(2+)/CaM-dependent way from the reductase domain of one subunit to the heme of the other subunit, as proposed for inducible NOS. This suggests that the two different isoforms form similar dimeric complexes. In a series of heterodimers containing a Ca(2+)/CaM-insensitive mutant (delta40), electrons transferred from the reductase domain to both hemes in a Ca(2+)/CaM-independent way. Thus, in the delta40 mutant electron transfer from the reductase domains to the heme domains can occur via both inter-subunit and intra-subunit mechanisms. However, NO formation activity was exclusively linked to inter-subunit electron transfer and was observed only in the presence of Ca(2+)/CaM. This suggests that the mechanism of activation of nNOS by CaM is not solely dependent on the activation of electron transfer to the nNOS hemes but may involve additional structural factors linked to the catalytic action of the heme domain.  相似文献   

8.
Recently, we obtained x-ray crystallographic data showing the presence of a ZnS4 center in the structure of Escherichia coli-expressed bovine endothelial nitric-oxide synthase (eNOS) and rat neuronal nitric-oxide synthase (nNOS). The zinc atom is coordinated by two CXXXXC motifs, one motif being contributed by each NOS monomer (cysteine 326 through cysteine 331 in rat nNOS). Mutation of the nNOS cysteine 331 to alanine (C331A) results in the loss of NO. synthetic activity and also results in an inability to bind zinc efficiently. Although prolonged incubation of the C331A mutant of nNOS with high concentrations of L-arginine results in a catalytically active enzyme, zinc binding is not restored. In this study, we investigate the zinc stoichiometry in wild-type nNOS and eNOS, as well as in the C331A-mutated nNOS, using a chelation assay and electrothermal vaporization-inductively coupled plasma-mass spectrometry. The data reveal an approximate 2:1 stoichiometry of heme to zinc in (6R)-5,6,7,8-tetrahydro-L-biopterin-replete, wild-type nNOS and eNOS and show that the reactivated C331A mutant of nNOS has a limited ability to bind zinc. The present study substantiates that the zinc in NOS is structural rather than catalytic and is important for maintaining optimally functional, enzymatically active, constitutive NOSs.  相似文献   

9.
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the Hsp90/Hsp70-based chaperone machinery, which regulates signaling proteins by modulating ligand binding clefts (Pratt, W. B., Morishima, Y., and Osawa, Y. (2008) J. Biol. Chem. 283, 22885-22889). We have previously shown that nNOS turnover is due to Hsp70/CHIP-dependent ubiquitination and proteasomal degradation. In this work, we use an intracellular cross-linking approach to study both chaperone binding and nNOS ubiquitination in intact HEK293 cells. Treatment of cells with N(G)-nitro-L-arginine, a slowly reversible competitive inhibitor that stabilizes nNOS, decreases both nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP. Treatment with the calcium ionophore A23187, which increases Ca(2+)-calmodulin binding to nNOS, increases nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP in a manner that is specific for changes in the heme/substrate binding cleft. Both Hsp90 and Hsp70 are bound to the expressed nNOS oxygenase domain, which contains the heme/substrate binding cleft, but not to the reductase domain, and binding is increased to an expressed fragment containing both the oxygenase domain and the calmodulin binding site. Overexpression of Hsp70 promotes nNOS ubiquitination and decreases nNOS protein, and overexpression of Hsp90 inhibits nNOS ubiquitination and increases nNOS protein, showing the opposing effects of the two chaperones as they participate in nNOS quality control in the cell. These observations support the notion that changes in the state of the heme/substrate binding cleft affect chaperone binding and thus nNOS ubiquitination.  相似文献   

10.
Neuronal nitric-oxide synthase (nNOS) is composed of a heme oxygenase domain and a flavin-bound reductase domain. Ca(2+)/calmodulin (CaM) is essential for interdomain electron transfer during catalysis, whereas the role of the catalytically important cofactor, tetrahydrobiopterin (H4B) remains elusive. The product NO appears to bind to the heme and works as a feedback inhibitor. The present study shows that the Fe(3+)-NO complex is reduced to the Fe(2+)-NO complex by NADPH in the presence of both l-Arg and H4B even in the absence of Ca(2+)/CaM. The complex could not be fully reduced in the absence of H4B under any circumstances. However, dihydrobiopterin and N(G)-hydroxy-l-Arg could be substituted for H4B and l-Arg, respectively. No direct correlation could be found between redox potentials of the nNOS heme and the observed reduction of the Fe(3+)-NO complex. Thus, our data indicate the importance of the pterin binding to the active site structure during the reduction of the NO-heme complex by NADPH during catalytic turnover.  相似文献   

11.
Endothelial nitric-oxide synthase (type III) (eNOS) was reported to form an inhibitory complex with the bradykinin receptor B2 (B2R) from which the enzyme is released in an active form upon receptor activation (Ju, H., Venema, V. J., Marrero, M. B., and Venema, R. C. (1998) J. Biol. Chem. 273, 24025-24029). Using a synthetic peptide derived from the known inhibitory sequence of the B2R (residues 310-329) we studied the interaction of the receptor with purified eNOS and neuronal nitric-oxide synthase (type I) (nNOS). The peptide inhibited formation of L-citrulline by eNOS and nNOS with IC(50) values of 10.6 +/- 0.4 microM and 7.1 +/- 0.6 microM, respectively. Inhibition was not due to an interference of the peptide with L-arginine or tetrahydrobiopterin binding. The NADPH oxidase activity of nNOS measured in the absence of L-arginine was inhibited by the peptide with an IC(50) of 3.7 +/- 0.6 microM, but the cytochrome c reductase activity of the enzyme was much less susceptible to inhibition (IC(50) >0.1 mM). Steady-state absorbance spectra of nNOS recorded during uncoupled NADPH oxidation showed that the heme remained oxidized in the presence of the synthetic peptide consisting of amino acids 310-329 of the B2R, whereas the reduced oxyferrous heme complex was accumulated in its absence. These data suggest that binding of the B2R 310-329 peptide blocks flavin to heme electron transfer. Co-immunoprecipitation of B2R and nNOS from human embryonic kidney cells stably transfected with human nNOS suggests that the B2R may functionally interact with nNOS in vivo. This interaction of nNOS with the B2R may recruit the enzyme to allow for the effective coupling of bradykinin signaling to the nitric oxide pathway.  相似文献   

12.
Nitric oxide (NO) is synthesized from L-Arg in the P450-type heme active site of nitric-oxide synthase (NOS). The internal axial ligand of the heme, Cys415, may hydrogen-bond to the side chain of the conserved Arg418 residue in neuronal NOS (nNOS). To understand the role of Arg418, we generated the nNOS mutants, Arg418Ala and Arg418Leu. NO formation activities with the mutants using both L-Arg and NHA as substrates were less than 0.1 nmol/min/nmol heme, in contrast to rates of 34-35 nmol/min/nmol heme with the wild-type enzyme. The heme reduction rate of the mutants was very slow, less than 10(-2) min(-1), in contrast with that (more than 10 min(-1)) of the wild type. The backbone amide group of Arg418 interacts with the Cys415 thiolate through van der Waals contact, whereas the carbonyl oxygen of Cys415 and the guanidino N(epsilon) atom of Arg418 form a tight hydrogen bond. The results suggest that Arg418 is critical in preserving the heme proximal structure and thus, is indirectly involved in both catalysis and electron transfer from the reductase domain to the heme.  相似文献   

13.
The nitric-oxide synthases (NOSs) are comprised of an oxygenase domain and a reductase domain bisected by a calmodulin (CaM) binding region. The NOS reductase domains share approximately 60% sequence similarity with the cytochrome P450 oxidoreductase (CYPOR), which transfers electrons to microsomal cytochromes P450. The crystal structure of the neuronal NOS (nNOS) connecting/FAD binding subdomains reveals that the structure of the nNOS-connecting subdomain diverges from that of CYPOR, implying different alignments of the flavins in the two enzymes. We created a series of chimeric enzymes between nNOS and CYPOR in which the FMN binding and the connecting/FAD binding subdomains are swapped. A chimera consisting of the nNOS heme domain and FMN binding subdomain and the CYPOR FAD binding subdomain catalyzed significantly increased rates of cytochrome c reduction in the absence of CaM and of NO synthesis in its presence. Cytochrome c reduction by this chimera was inhibited by CaM. Other chimeras consisting of the nNOS heme domain, the CYPOR FMN binding subdomain, and the nNOS FAD binding subdomain with or without the tail region also catalyzed cytochrome c reduction, were not modulated by CaM, and could not transfer electrons into the heme domain. A chimera consisting of the heme domain of nNOS and the reductase domain of CYPOR reduced cytochrome c and ferricyanide at rates 2-fold higher than that of native CYPOR, suggesting that the presence of the heme domain affected electron transfer through the reductase domain. These data demonstrate that the FMN subdomain of CYPOR cannot effectively substitute for that of nNOS, whereas the FAD subdomains are interchangeable. The differences among these chimeras most likely result from alterations in the alignment of the flavins within each enzyme construct.  相似文献   

14.
It is established that neuronal nitric-oxide synthase (nNOS) is ubiquitylated and proteasomally degraded. The proteasomal degradation of nNOS is enhanced by suicide inactivation of nNOS or by the inhibition of hsp90, which is a chaperone found in a native complex with nNOS. In the current study, we have examined whether CHIP, a chaperone-dependent E3 ubiquitin-protein isopeptide ligase that is known to ubiquitylate other hsp90-chaperoned proteins, could act as an ubiquitin ligase for nNOS. We found with the use of HEK293T or COS-7 cells and transient transfection methods that CHIP overexpression causes a decrease in immunodetectable levels of nNOS. The extent of the loss of nNOS is dependent on the amount of CHIP cDNA used for transfection. Lactacystin (10 microM), a selective proteasome inhibitor, attenuates the loss of nNOS in part by causing the nNOS to be found in a detergent-insoluble form. Immunoprecipitation of the nNOS and subsequent Western blotting with an anti-ubiquitin IgG shows an increase in nNOS-ubiquitin conjugates because of CHIP. Moreover, incubation of nNOS with a purified system containing an E1 ubiquitin-activating enzyme, an E2 ubiquitin carrier protein conjugating enzyme (UbcH5a), CHIP, glutathione S-transferase-tagged ubiquitin, and an ATP-generating system leads to the ubiquitylation of nNOS. The addition of purified hsp70 and hsp40 to this in vitro system greatly enhances the amount of nNOS-ubiquitin conjugates, suggesting that CHIP is an E3 ligase for nNOS whose action is facilitated by (and possibly requires) its interaction with nNOS-bound hsp70.  相似文献   

15.
Neuronal nitric-oxide synthase (nNOS or NOS I) and endothelial NOS (eNOS or NOS III) differ widely in their reductase and nitric oxide (NO) synthesis activities, electron transfer rates, and propensities to form a heme-NO complex during catalysis. We generated chimeras by swapping eNOS and nNOS oxygenase domains to understand the basis for these differences and to identify structural elements that determine their catalytic behaviors. Swapping oxygenase domains did not alter domain-specific catalytic functions (cytochrome c reduction or H(2)O(2)-supported N(omega)-hydroxy-l-arginine oxidation) but markedly affected steady-state NO synthesis and NADPH oxidation compared with native eNOS and nNOS. Stopped-flow analysis showed that reductase domains either maintained (nNOS) or slightly exceeded (eNOS) their native rates of heme reduction in each chimera. Heme reduction rates were found to correlate with the initial rates of NADPH oxidation and heme-NO complex formation, with the percentage of heme-NO complex attained during the steady state, and with NO synthesis activity. Oxygenase domain identity influenced these parameters to a lesser degree. We conclude: 1) Heme reduction rates in nNOS and eNOS are controlled primarily by their reductase domains and are almost independent of oxygenase domain identity. 2) Heme reduction rate is the dominant parameter controlling the kinetics and extent of heme-NO complex formation in both eNOS and nNOS, and thus it determines to what degree heme-NO complex formation influences their steady-state NO synthesis, whereas oxygenase domains provide minor but important influences. 3) General principles that relate heme reduction rate, heme-NO complex formation, and NO synthesis are not specific for nNOS but apply to eNOS as well.  相似文献   

16.
Nitric-oxide synthase, a cytochrome P450-like hemoprotein enzyme, catalyzes the synthesis of nitric oxide, a critical signaling molecule in a variety of physiological processes. Our laboratory has discovered that certain drugs suicide-inactivate neuronal nitric-oxide synthase (nNOS) and lead to the preferential ubiquitination of the inactivated nNOS by an Hsp70- and CHIP (C terminus of Hsc70-interacting protein)-dependent process. To further understand the process by which altered nNOS is recognized, ubiquitinated, and proteasomally degraded, we examined the sites of ubiquitination on nNOS. We utilized an in vitro ubiquitination system containing purified E1, E2 (UbcH5a), Hsp70, and CHIP that recapitulates the ability of the cells to selectively recognize and ubiquitinate the altered forms of nNOS. LC-MS/MS analysis of the tryptic peptides obtained from the in vitro ubiquitinated nNOS identified 12 ubiquitination sites. Nine of the sites were within the oxygenase domain and two were in the calmodulin-binding site, which links the oxygenase and reductase domains, and one site was in the reductase domain. Mutational analysis of the lysines in the calmodulin-binding site revealed that Lys-739 is a major site for poly-ubiquitination of nNOS in vitro and regulates, in large part, the CHIP-dependent degradation of nNOS in HEK293 cells, as well as in in vitro studies with fraction II. Elucidating the exact site of ubiquitination is an important step in understanding how chaperones recognize and trigger degradation of nNOS.  相似文献   

17.
Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys842) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys842. Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys842 is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.  相似文献   

18.
In nitric-oxide synthase (NOS) the FMN can exist as the fully oxidized (ox), the one-electron reduced semiquinone (sq), or the two-electron fully reduced hydroquinone (hq). In NOS and microsomal cytochrome P450 reductase the sq/hq redox potential is lower than that of the ox/sq couple, and hence it is the hq form of FMN that delivers electrons to the heme. Like NOS, cytochrome P450BM3 has the FAD/FMN reductase fused to the C-terminal end of the heme domain, but in P450BM3 the ox/sq and sq/hq redox couples are reversed, so it is the sq that transfers electrons to the heme. This difference is due to an extra Gly residue found in the FMN binding loop in NOS compared with P450BM3. We have deleted residue Gly-810 from the FMN binding loop in neuronal NOS (nNOS) to give Delta G810 so that the shorter binding loop mimics that in cytochrome P450BM3. As expected, the ox/sq redox potential now is lower than the sq/hq couple. Delta G810 exhibits lower NO synthase activity but normal levels of cytochrome c reductase activity. However, unlike the wild-type enzyme, the cytochrome c reductase activity of Delta G810 is insensitive to calmodulin binding. In addition, calmodulin binding to Delta G810 does not result in a large increase in FMN fluorescence as in wild-type nNOS. These results indicate that the FMN domain in Delta G810 is locked in a unique conformation that is no longer sensitive to calmodulin binding and resembles the "on" output state of the calmodulin-bound wild-type nNOS with respect to the cytochrome c reduction activity.  相似文献   

19.
Isoform-specific nitric-oxide synthase (NOS) inhibitors may prove clinically useful in reducing the pathophysiological effects associated with increased neuronal NOS (nNOS) or inducible NOS (iNOS) activity in a variety of neurological and inflammatory disorders. Analogs of the NOS substrate L-arginine are pharmacologically attractive inhibitors because of their stability, reliable cell uptake, and good selectivity for NOS over other heme proteins. Some inhibitory arginine analogs show significant isoform selectivity although the structural or mechanistic basis of such selectivity is generally poorly understood. In the present studies, we determined by x-ray crystallography the binding interactions between rat nNOS and N5-(1-imino-3-butenyl)-L-ornithine (L-VNIO), a previously identified mechanism-based, irreversible inactivator with moderate nNOS selectivity. We have also synthesized and mechanistically characterized several L-VNIO analogs and find, surprisingly, that even relatively minor structural changes produce inhibitors that are either iNOS-selective or non-selective. Furthermore, derivatives having a methyl group added to the butenyl moiety of L-VNIO and L-VNIO derivatives that are analogs of homoarginine rather than arginine display slow-on, slow-off kinetics rather than irreversible inactivation. These results elucidate some of the structural requirements for isoform-selective inhibition by L-VNIO and its related alkyl- and alkenyl-imino ornithine and lysine derivatives and may provide information useful in the ongoing rational design of isoform-selective inhibitors.  相似文献   

20.
The neuronal and endothelial nitric-oxide synthases (nNOS and eNOS) differ from inducible NOS in their dependence on the intracellular Ca(2+) concentration. Both nNOS and eNOS are activated by the reversible binding of calmodulin (CaM) in the presence of Ca(2+), whereas inducible NOS binds CaM irreversibly. One major divergence in the close sequence similarity between the NOS isoforms is a 40-50-amino acid insert in the middle of the FMN-binding domains of nNOS and eNOS. It has previously been proposed that this insert forms an autoinhibitory domain designed to destabilize CaM binding and increase its Ca(2+) dependence. To examine the importance of the insert we constructed two deletion mutants designed to remove the bulk of it from nNOS. Both mutants (Delta40 and Delta42) retained maximal NO synthesis activity at lower concentrations of free Ca(2+) than the wild type enzyme. They were also found to retain 30% of their activity in the absence of Ca(2+)/CaM, indicating that the insert plays an important role in disabling the enzyme when the physiological Ca(2+) concentration is low. Reduction of nNOS heme by NADPH under rigorous anaerobic conditions was found to occur in the wild type enzyme only in the presence of Ca(2+)/CaM. However, reduction of heme in the Delta40 mutant occurred spontaneously on addition of NADPH in the absence of Ca(2+)/CaM. This suggests that the insert regulates activity by inhibiting electron transfer from FMN to heme in the absence of Ca(2+)/CaM and by destabilizing CaM binding at low Ca(2+) concentrations, consistent with its role as an autoinhibitory domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号