首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

2.
Liu Y  Li WQ  Wang Y 《生理科学进展》2010,41(2):117-120
神经型钙粘素(N-cadherin)作为经典钙粘素家族的一员,是钙离子依赖的细胞连接中的一种重要跨膜成分,而其作为神经突触的粘附受体不仅为跨突触的细胞骨架提供了形式上的连接,还成为了功能上沟通突触前后膜的桥梁,传递粘附信号并调节突触的发育和成熟突触的可塑性。本文主要就后者讨论N-cadherin参与的成熟突触形态和功能的变化及调节中的新近进展,并试从粘附作用与信号传递两方面,分别从粘附作用的建立和调节,跨膜、跨突触,以及胞内信号传递,来分析N-cadherin对成熟突触的作用。可以看出,粘附是基础,信号传递是建立在其上的功能,并受粘附的调节。二者相互联系,协调作用。粘附的建立需通过信号传递与细胞骨架沟通,而粘附反过来又成为信号传递通路的起始信号,从而共同介导突触的形态和功能的变化及重塑。  相似文献   

3.
The ability of cells to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis and viability. One of the key cellular responses to nutrient withdrawal is the upregulation of autophagy. Recently, there has been a rapid expansion in our knowledge of the molecular mechanisms involved in the regulation of mammalian autophagy induction in response to depletion of key nutrients. Intracellular amino acids, ATP, and oxygen levels are intimately tied to the cellular balance of anabolic and catabolic processes. Signaling from key nutrient-sensitive kinases mTORC1 and AMP-activated protein kinase (AMPK) is essential for the nutrient sensing of the autophagy pathway. Recent advances have shown that the nutrient status of the cell is largely passed on to the autophagic machinery through the coordinated regulation of the ULK and VPS34 kinase complexes. Identification of extensive crosstalk and feedback loops converging on the regulation of ULK and VPS34 can be attributed to the importance of these kinases in autophagy induction and maintaining cellular homeostasis.  相似文献   

4.
It was previously reported that Cbl-b associates with Crk-L in Jurkat T cells. However, the physiological significance of such association remains unclear. Here we examined a regulatory role of Cbl-b in Crk-L-C3G signaling pathway. We found that Cbl-b associates with, and induces, ubiquitin conjugation to Crk-L, which requires a functional RING finger. Cbl-b deficiency does not affect Crk-L stability, but its association with C3G. In Cbl-b-/- T cells, the interaction between Crk-L and C3G, and the activity of the small GTPase Rap1, are increased. Cbl-b-/- T cells also display increased adhesion and cell surface binding to ICAM-1, a finding that is supported by the enhanced clustering of LFA-1 in Cbl-b-/- T cells in response to TCR stimulation. Thus, Cbl-b plays a negative role in Crk-L-C3G-mediated Rap1 and LFA-1 activation in T cells.  相似文献   

5.
6.
7.
Epithelial cell-cell interactions require localized adhesive interactions between E-cadherin on opposing membranes and the activation of downstream signaling pathways that affect membrane and actin dynamics. However, it is not known whether E-cadherin engagement and activation of these signaling pathways are locally coordinated or whether signaling is sustained or locally down-regulated like other receptor-mediated pathways. To obtain high spatiotemporal resolution of immediate-early signaling events upon E-cadherin engagement, we used laser tweezers to place beads coated with functional E-cadherin extracellular domain on cells. We show that cellular E-cadherin accumulated rapidly around beads, reaching a sustained plateau level in 1-3 min. Phosphoinositides and Rac1 co-accumulated with E-cadherin, reached peak levels with E-cadherin, but then rapidly dispersed. Both E-cadherin and Rac1 accumulated independently of Rac1 GTP binding/hydrolysis, but these activities were required for Rac1 dispersal. E-cadherin accumulation was dependent on membrane dynamics and actin polymerization, but actin did not stably co-accumulate with E-cadherin; mathematical modeling showed that diffusion-mediated trapping could account for the initial E-cadherin accumulation. We propose that initial E-cadherin accumulation requires active membrane dynamics and involves diffusion-mediated trapping at contact sites; to propagate further contacts, phosphatidylinositol 3-kinase and Rac1 are transiently activated by E-cadherin engagement and initiate a new round of membrane dynamics, but they are subsequently suppressed at that site to allow maintenance of weak E-cadherin mediated adhesion.  相似文献   

8.
We studied the phosphorylation (activation status) of c-Src and CaMKII in MEFs either wild type for calreticulin, calreticulin-null, or rescued with full-length calreticulin. We found that calreticulin-null cells were poorly spread on the substratum and formed few, if any, focal contacts. Fibronectin expression and deposition were lower in calreticulin-null MEFs compared to calreticulin-expressing cells, which also exhibited increased c-Src and CaMKII phosphorylation (activity). Plating MEFs on preformed fibronectin rescued the poor adhesive phenotype of calreticulin-null cells, and caused a decrease in c-Src Y418 phosphorylation (activity). c-Src inhibition caused the calreticulin-null MEFs to become well spread on the substratum and to make many prominent focal contacts. Calmodulin and CaMKII inhibition caused similar results, along with a notable increase in paxillin phosphorylation (activation). To test if the calcium storage function of calreticulin was responsible for these effects, we manipulated intracellular [Ca(2+)]. Lowering [Ca(2+)](ER) caused an increase in c-Src phosphorylation and a decrease in fibronectin abundance. Conversely, increasing [Ca(2+)] caused opposite effects. These results suggest that calreticulin regulates both the c-Src and calmodulin/CaMKII pathways, enabling cells to be better spread on the substratum by allowing greater fibronectin deposition and increased focal contact formation.  相似文献   

9.
The mechanical coupling of a cell with the extracellular matrix relies on adhesion sites, clusters of membrane-associated proteins that communicate forces generated along the F-Actin filaments of the cytoskeleton to connecting tissue. Nascent adhesion sites have been shown to regulate these forces in response to tissue rigidity. Force-regulation by substrate rigidity of adhesion sites with fixed area is not possible for stationary adhesion sites, according to elasticity theory. A simple model is presented to describe force regulation by dynamical adhesion sites.  相似文献   

10.
TLR信号是生物体重要的病原体模式识别信号,在免疫识别和炎症反应中具有重要作用,其信号异常会导致许多免疫和炎症相关疾病的发生,因此探讨和明确TLR信号通路的调控机制具有非常重要的意义。近年来研究发现,作为重要的基因表达调控的小分子RNA,微RNA(microRNA,miRNA)能与TLR信号通路中众多靶基因mRNA的3’UTR区结合,从而抑制翻译过程或降解mRNA来发挥负性调控作用。本文就miRNA对TLR信号通路中的一些受体、信号分子、调节因子和细胞因子的负性调控作用方面进行阐述。  相似文献   

11.
Control of cell adhesion dynamics by Rap1 signaling   总被引:2,自引:0,他引:2  
  相似文献   

12.
Colorectal cancer (CRC) is frequently a lethal disease because of metastasis. Actin cytoskeletal rearrangement is an essential step in cell migration during activation of the epithelial-mesenchymal transition (EMT) program, which is associated with metastatic properties of cancer cells. Cofilin-1 protein modulates actin dynamics by promoting actin treadmilling, thereby driving membrane protrusion and cell migration and invasion. However, the role of cofilin-1 during EMT in CRC is unknown. Here, we show that cofilin-1 and p-cofilin-1 have distinct subcellular distribution in EMT cells, as determined by super-resolution microscopy images, indicating distinct roles in different areas of cells. Silenced cofilin-1 cells treated with TGF-β (siCofilin-1/TGF-β) evaded p-LIMK2-p-cofilin-1 status, leading to recovery of E-cadherin and claudin-3 at the cell-cell contact and their respective protein levels, actin reorganization, and decreased mesenchymal protein level. Furthermore, siCofilin-1/TGF-β cells exhibited decreased migration and invasion rates as well as MMP-2 and -9 activity and augmented focal adhesion size. The expression of an inactive phospho-cofilin-1 mimetic (S3E) reduced E-cadherin and claudin-3 in cell-cell contacts, reduced their protein levels, and increased vimentin protein. Based on our findings, we suggest that cofilin-1 is crucial to switching from epithelial to mesenchymal-like morphology and cell migration and invasion by regulating actin cytoskeleton organization through activation of RhoA-LIMK2-cofilin-1 signaling, impacting the cell-cell adhesion organization of colon cancer cells in EMT.  相似文献   

13.
The role of cell adhesion molecules in mediating interactions with neighboring cells and the extracellular matrix has long been appreciated. More recently, these molecules have been shown to modulate intracellular signal transduction cascades critical for cell growth and proliferation. Expression of adhesion molecule on glia (AMOG) is downregulated in human and mouse gliomas, suggesting that AMOG may be important for growth regulation in the brain. In this report, we examined the role of AMOG expression on cell growth and intracellular signal transduction. We show that AMOG does not negatively regulate cell growth in vitro or in vivo. Instead, expression of AMOG in AMOG-deficient cells results in a dramatic increase in cell size associated with protein kinase B/Akt hyperactivation, which occurs independent of phosphatidylinositol 3-kinase activation. AMOG-mediated Akt phosphorylation specifically activates the mTOR/p70S6 kinase pathway previously implicated in cell size regulation, but it does not depend on tuberous sclerosis complex/Ras homolog enriched in brain (Rheb) signaling. These data support a novel role for a glial adhesion molecule in cell size regulation through selective activation of the Akt/mTOR/S6K signal transduction pathway.  相似文献   

14.
Cell proliferation is regulated in part by cell-cell interactions mediated by cadherin and connexin. Here we present evidence that these two molecules act synergistically to suppress HEK293 cell proliferation by prolonging the G2/M phase. This event was accompanied by expression of p21, a potent Cdc2 kinase inhibitor. Not surprisingly, there was a concomitant decline in Cdc2 kinase activity. beta-Catenin/TCF signaling, which was downregulated by overexpression of N-cadherin, was found to inhibit transactivation of p21 gene expression. The effect of N-cadherin on cell proliferation and p21 expression was augmented by co-expression of connexin-43. Moreover, the magnitude of the connexin's effect was dependent on its ability to mediate intercellular communication. We conclude, therefore, that two major components of cell-cell interaction synergistically regulate cell cycle progression in HEK293 cells by regulating p21 expression in a beta-catenin/TCF-dependent manner.  相似文献   

15.
Negative regulation of FAK signaling by SOCS proteins   总被引:6,自引:0,他引:6       下载免费PDF全文
Liu E  Côté JF  Vuori K 《The EMBO journal》2003,22(19):5036-5046
Focal adhesion kinase (FAK) becomes activated upon integrin-mediated cell adhesion and controls cellular responses to the engagement of integrins, including cell migration and survival. We show here that a coordinated signaling by integrins and growth factor receptors induces expression of suppressor of cytokine signaling-3 (SOCS-3) and subsequent interaction between endogenous FAK and SOCS-3 proteins in 3T3 fibroblasts. Cotransfection studies demonstrated that SOCS-3, and also SOCS-1, interact with FAK in a FAK-Y397-dependent manner, and that both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of the SOCS proteins contribute to FAK binding. SOCS-1 and SOCS-3 were found to inhibit FAK-associated kinase activity in vitro and tyrosine phosphorylation of FAK in cells. The SOCS proteins also promoted polyubiquitination and degradation of FAK in a SOCS box-dependent manner and inhibited FAK-dependent signaling events, such as cell motility on fibronectin. These studies suggest a negative role of SOCS proteins in FAK signaling, and for a previously unidentified regulatory mechanism for FAK function.  相似文献   

16.
Cadherins mediate cell-cell adhesion, but little is known about how their expression is regulated. In Madin-Darby canine kidney (MDCK) cells, the cadherin-associated cytoplasmic proteins alpha- and beta-catenin form high molecular weight protein complexes with two glycoproteins (Stewart, D. B., and Nelson, W. J. (1997) J. Biol. Chem. 272, 29652-29662), one of which is E-cadherin and the other we show here is the type II cadherin, cadherin-6 (K-cadherin). In low density, motile MDCK cells, the steady-state level of cadherin-6 is low, but protein is synthesized. However, following cell-cell adhesion, cadherin-6 becomes stabilized and accumulates by >50-fold at cell-cell contacts while the E-cadherin level increases only 5-fold during the same period. To investigate a role of beta-catenin in regulation of cadherin expression in MDCK cells, we examined the effects of expressing signaling-active beta-catenin mutants (DeltaGSK, DeltaN90, and DeltaN131). In these cells, while levels of E-cadherin, alpha- and beta-catenin are similar to those in control cells, levels of cadherin-6 are significantly reduced due to rapid degradation of newly synthesized protein. Additionally, these cells appeared more motile and less cohesive, as expression of DeltaGSK-beta-catenin delayed the establishment of tight confluent cell monolayers compared with control cells. These results indicate that the level of cadherin-6, but not that of E-cadherin, is strictly regulated post-translationally in response to Wnt signaling, and that E-cadherin and cadherin-6 may contribute different properties to cell-cell adhesion and the epithelial phenotype.  相似文献   

17.
18.
19.
An extracellular serine protease cascade generates the ligand that activates the Toll signaling pathway to establish dorsoventral polarity in the Drosophila embryo. We show here that this cascade is regulated by a serpin-type serine protease inhibitor, which plays an essential role in confining Toll signaling to the ventral side of the embryo. This role is strikingly analogous to the function of the mammalian serpin antithrombin in localizing the blood-clotting cascade, suggesting that serpin inhibition of protease activity may be a general mechanism for achieving spatial control in diverse biological processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号