首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
To examine functional questions of arboreal locomotor ecology, the selection of canopy elements by Bornean agile gibbons (Hylobates agilis) and long-tailed macaques (Macaca fascicularis) was contrasted, and related to locomotor behaviors. The two species, and in some cases, the macaque sexes, varied in their use of most structural elements. Although both species traveled most frequently in the main canopy layer (macaques: 56%, gibbons: 48%), the gibbons strongly preferred the emergent canopy layer and traveled higher than the macaques (31 vs. 23 m above ground) in larger trees (48 vs. 26 cm dbh). Macaques preferred to cross narrower gaps (50% were in the class 0.1–0.5 m wide) than gibbons (42% were 1.6–3.0 m wide), consistent with the maximum gap width each crossed (3.5 m for macaques, 9 m for gibbons). Macaques could cross only 12% of the gaps encountered in the main canopy, and < 5% of the gaps in each of the other four layers. In contrast, all layers appear relatively continuous for gibbons. Specialized locomotor modes were used disproportionately at the beginning and end of travel segments, further indicating that behavior was organized around gap crossings. A model is defined, the Perceived Continuity Index (PCI), which predicts the relative use of canopy strata for each species, based on the percentage of gaps a species can cross, the frequency of gaps, and median length of continuous canopy structure in each canopy layer. The results support the hypothesis that locomotor behaviors, and strategies of selecting canopy strata for travel, are strongly constrained by wide gaps between trees and are ultimately based on selection for efficient direct line travel between distant points. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The striking variation in limb proportions within the genus Homo during the Pleistocene has important implications for understanding biomechanics in the later evolution of human bipedalism, because longer limbs and limb segments may increase bending moments about bones and joints. This research tested the hypothesis that long lower limbs and tibiae bring about increases in A-P bending forces on the lower limb during the stance phase of human walking. High-speed 3-D video data, force plates, and motion analysis software were used to analyze the walking gait of 27 modern human subjects. Limb length, as well as absolute and relative tibia length, were tested for associations with a number of kinetic and kinematic variables. Results show that individuals with longer limbs do incur greater bending moments along the lower limb during the first half of stance phase. During the second half of stance, individuals moderate bending moments through a complex of compensatory mechanisms, including keeping the knee in a more extended position. Neither absolute nor relative tibia length had any effect on the kinetic or kinematic variables tested. If these patterns apply to fossil Homo, groups with relatively long limbs (e.g. H. ergaster or early H. sapiens) may have experienced elevated bending forces along the lower limb during walking compared to those with relatively shorter limbs (e.g. the Neandertals). These increased forces could have led to greater reinforcement of joints and diaphyses. These results must be considered when formulating explanations for variation in limb morphology among Pleistocene hominins.  相似文献   

3.
4.
Most primates use diagonal sequence (DS), diagonal couplets (DC) gaits when they walk or run quadrupedally, and it has been suggested that DSDC gaits contribute to stability in their natural arboreal habitats compared to other symmetrical gaits. However, this postulate is based solely on studies of primate gaits using continuous terrestrial and arboreal substrates. A particular species may select suitable gaits according to the substrate properties. Here, we analyzed the gaits of Japanese macaques moving on a horizontal ladder with rung intervals ranging from 0.40 to 0.80 m to elucidate the relative advantages of each observed form of gait. The rung arrangement forced our macaques to choose either diagonal coupling or DS gaits. One macaque consistently used diagonal coupling (i.e., DSDC and LSDC gaits) across narrow and intermediate rung intervals, whereas the other macaque used DS gaits (i.e., DSDC and DSLC gaits). At wider rung intervals, both macaques shifted to a two‐one sequence (TOS), which is characterized by two nearly simultaneous touchdowns of both forelimbs and one touchdown of each hind limb in a stride. The transition to the TOS sequence increased the duration of support on multiple limbs, but always included periods of a whole‐body aerial phase. These results suggest that Japanese macaques prefer DSDC gaits, because the diagonal coupling and DS contribute separately to stability on complex supports compared to the lateral coupling and lateral sequence. We also postulate that stability triggers the transition from symmetrical gaits to the TOS sequence. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
The structure and stability of 22 B36N36 cage molecules containing four-membered (F 4), five-membered (F 5), six-membered (F 6), eight-membered (F 8) and 12-membered (F 12) rings have been computed at the B3LYP/6-31G* level of density functional theory. The most stable structure (1) has T d symmetry with six F 4 and 32 F 6 rings, following the isolated square rule, while the fullerene-like structures (12 F 5 and 26 F 6) and also structures with F 8 and F 12 are much higher in energy. Figure The T d symmetrical structure (1) with six F 4 and thirty-two F 6 rings is the most stable B36N36 cage.  相似文献   

6.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

7.
8.
The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.  相似文献   

9.

Background

Swinging limb lameness is defined as a motion disturbance ascribed to a limb in swing phase. Little is known about its biomechanics in dogs, particularly about the body motions that accompany it, such as vertical head and pelvic motion asymmetry. The aim of this study was to describe the changes in vertical head and pelvic motion asymmetry in dogs with induced swinging limb motion disturbance, mimicking a swinging limb lameness. Fore- and hind-limb lameness was induced in ten sound dogs by placing a weight (200 g) proximal to the carpus or tarsus, respectively. Marker-based motion capture by eight infrared light emitting video cameras recorded the dogs when trotting on a treadmill. Body symmetry parameters were calculated, including differences between the two highest positions of the head (HDmax) and pelvis (PDmax) and between the two lowest positions of the head (HDmin) and pelvis (PDmin), with a value of zero indicating perfect symmetry.

Results

Induction of swinging forelimb lameness showed significant changes in HDmax (median and range: sound 1.3 mm [??4.7 to 3.1], in the left side ??28.5 mm [??61.2 to ??17.9] and in the right side 20.1 mm [??4.4 to 47.5]) and, induction of swinging hind limb lameness showed significant changes in PDmax (sound 2.7 mm [??7.4 to 7.2], in the left side ??10.9 mm [??22.4 to 0.5] and in the right side 8.6 mm [??3 to 30]), as well as an increased hip movement asymmetry (sound 1.6 mm [??8.6 to 19.9], in the left side ??18.1 mm [??36.7 to 5.4] and in the right side 15 mm [??20.7 to 32.1]) (P?<?0.05).

Conclusions

Induced swinging fore- and hind limb lameness resulted in significant increased asymmetry of the maximal vertical displacement movement of the head and pelvis, due to decreased lifting of the head in forelimb lameness and of the pelvis in hind limb lameness. The results suggest that asymmetry of the maximal vertical displacement of the head and pelvis (i.e. lifting) is a key lameness sign to evaluate during examination of swinging limb lameness.
  相似文献   

10.

Background  

Dual-channel microarray experiments are commonly employed for inference of differential gene expressions across varying organisms and experimental conditions. The design of dual-channel microarray experiments that can help minimize the errors in the resulting inferences has recently received increasing attention. However, a general and scalable search tool and a corresponding database of optimal designs were still missing.  相似文献   

11.
12.
More than one-third of orchid species do not provide their pollinators with either pollen or nectar rewards. Floral mimicry could explain the maintenance of these rewardless orchid species, but most rewardless orchids do not appear to have a rewarding plant that they mimic specifically. We tested the hypothesis that floral mimicry can occur through similarity based on corolla colour alone, using naive bumble-bees foraging on arrays of plants with one rewarding model species, and one rewardless putative mimic species (Dactylorhiza sambucina) which had two colour morphs. We found that when bees were inexperienced, they visited both rewardless morphs randomly. However, after bees had gained experience with the rewarding model, and it was removed from the experiment, bees resampled preferentially the rewardless morph most similar to it in corolla colour. This is the first clear evidence, to our knowledge, that pollinators could select for floral mimicry. We suggest that floral mimicry can be a selective force acting on rewardless orchids, but only under some ecological conditions. In particular, we argue that selection on early-flowering rewardless orchids that receive visits from a large pool of naive pollinators will be weakly influenced by mimicry.  相似文献   

13.
14.
15.
Glucoamylase (GA) was immobilized by adsorption on carbon support: on Sibunit, on bulk catalytic filamentous carbon (bulk CFC) and on activated carbon (AC). This was used to prepare heterogeneous biocatalysts for the hydrolysis of starch dextrin. The effect of the texture characteristics and chemical properties of the support surface on the enhancement of the thermal stability of the immobilized enzyme was studied, and the rates of the biocatalyst's thermal inactivation at 65-80 degrees C were determined. The thermal stability of glucoamylase immobilized on different carbon supports was found to increase by 2-3 orders of magnitude in comparison with the soluble enzyme, and decrease in the following order: GA on Sibunit>GA on bulk CFC>GA on AC. The presence of the substrate (dextrin) was found to have a significant stabilizing effect. The thermal stability of the immobilized enzyme was found to increase linearly when the concentration of dextrin was increased from 10 wt/vol % to 50 wt/vol %. The total stabilization effect for glucoamylase immobilized on Sibunit in concentrated dextrin solutions was about 10(5) in comparison with the enzyme in a buffer solution. The developed biocatalyst, 'Glucoamylase on Sibunit' was found to have high operational stability during the continuous hydrolysis of 30-35 wt/vol % dextrin at 60 degrees C, its inactivation half-time (t1/2) exceeding 350 h. To improve the starch saccharification productivity, an immersed vortex reactor (IVR) was designed and tested in the heterogeneous process with the biocatalyst 'Glucoamylase on Sibunit'. The dextrin hydrolysis rate, as well as the process productivity in the vortex reactor, was found to increase by a factor of 1.2-1.5 in comparison with the packed-bed reactor.  相似文献   

16.
ABSTRACT.
  • 1 A comparison was made of the insect fauna on paired Terminalia sericea, Burkea africana and Ochna pulchra trees; one tree in each pair was treated with Formex® to exclude ants from the canopy, and the other was designated the control.
  • 2 Treatment with Formex banding to exclude ants did not influence plant phenology.
  • 3 Pyrethrum knockdown samples from control trees had generally more insect individuals and insect species than samples from trees where ants were excluded.
  • 4 Formex-treated trees had significantly less homopterous individuals and species than the control trees.
  • 5 With the exception of ants and Homoptera, there was no difference in the insect guild composition and dominance ranking of various insect taxa, sampled by pyrethrum knockdown, between the control and Formex-treated trees.
  • 6 T.sericea had significantly greater populations of both sessile and mobile Homoptera on the control trees than on the Formex-treated trees. A similar trend could be seen on B.africana. There were significantly more sessile homopterans on the control trees of O.pulchra than on the Formex-treated trees. Low numbers of mobile Homoptera were recorded on both control and Formex-treated O.pulchra trees, and numbers on control trees were fewer in comparison to numbers of mobile Homoptera on control T.sericea and B.africana trees.
  • 7 It is concluded that the ants have similar effects on the insect communities of trees in a natural, undisturbed savanna as has been demonstrated on trees in agro-ecosystems, and on plants that are structurally adapted for mutualistic associations with ants.
  • 8 Although slight, leaf damage by some leaf-feeding insects was greater on trees where ants had been excluded than on control trees that supported foraging ant populations.
  相似文献   

17.
Quadrupedal locomotion of squirrel monkeys on small-diameter support was analyzed kinematically and kinetically to specify the timing between limb movements and substrate reaction forces. Limb kinematics was studied cineradiographically, and substrate reaction forces were synchronously recorded. Squirrel monkeys resemble most other quadrupedal primates in that they utilize a diagonal sequence/diagonal couplets gait when walking on small branches. This gait pattern and the ratio between limb length and trunk length influence limb kinematics. Proximal pivots of forelimbs and hindlimbs are on the same horizontal plane, thus giving both limbs the same functional length. However, the hindlimbs are anatomically longer than the forelimbs. Therefore, hindlimb joints must be more strongly flexed during the step cycle compared to the forelimb joints. Because the timing of ipsilateral limb movements prevents an increasing amount of forelimb retraction, the forelimb must be more protracted during the initial stance phase. At this posture, gravity acts with long moment arms at proximal forelimb joints. Squirrel monkeys support most of their weight on their hindlimbs. The timing of limb movements and substrate reaction forces shows that the shift of support to the hindlimbs is mainly done to reduce the compressive load on the forelimb. The hypothesis of the posterior weight shift as a dynamic strategy to reduce load on forelimbs, proposed by Reynolds ([1985]) Am. J. Phys. Anthropol. 67:335-349; [1985] Am. J. Phys. Anthropol. 67:351-362), is supported by the high correlation of ratios between forelimb and hindlimb peak vertical forces and the range of motion of shoulder joint and scapula in primates.  相似文献   

18.
This study evaluates in an animal model the efficacy of muscle flaps in protecting the fabric vascular prosthesis when placed in contaminated wounds. A total of 20 adult mongrel dogs received a 2-cm interpositional polytetrafluoroethylene (PTFE) graft to each femoral artery at the groin level. During the surgical procedure, the wounds were inoculated with a Staphylococcus aureus suspension containing either 1 x 10(4) or 1 x 10(5) organisms per milliliter. In half the animals, the grafts were wrapped with a distally based sartorius muscle flap before a standard two-layer closure was completed. One month after the surgery, all the animals were sacrificed and quantitative cultures were performed of the grafts and wounds. The muscle flaps were capable of protecting the vascular prosthesis with inoculums up to 1 x 10(4) organisms (p less than 0.05), but at greater bacterial contamination their efficacy was no longer significant.  相似文献   

19.
20.
The higher nervous activity has been studied by means of motor-alimentary conditioned reflexes and delayed reactions in dogs, cats and albino rats at early stages of development of experimental informational neurosis. It was shown that formation of stable pathological reactions is preceeded by self- regulational activity of the brain directed towards elimination of a pathological situation, as well as to the increase of the stability of the nervous system to pathogenic agents. Comparative studies on rodents and predatory animals indicate that in different species the same pathogenic effects on the brain may elicit different forms of self-regulation of the higher nervous activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号