首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Telomeres are required to prevent end-to-end chromosome fusions. End-to-end fusions of metaphase chromosomes are observed in mammalian cells with dysfunctional telomeres due to diminished function of telomere-associated proteins and in cells experiencing extensive attrition of telomeric DNA. However, the molecular nature of these fusions and the mechanism by which they occur have not been elucidated. RESULTS: We document that telomere fusions resulting from inhibition of the telomere-protective factor TRF2 are generated by DNA ligase IV-dependent nonhomologous end joining (NHEJ). NHEJ gives rise to covalent ligation of the C strand of one telomere to the G strand of another. Breakage of the resulting dicentric chromosomes results in nonreciprocal translocations, a hallmark of human cancer. Telomere NHEJ took place before and after DNA replication, and both sister telomeres participated in the reaction. Telomere fusions were accompanied by active degradation of the 3' telomeric overhangs. CONCLUSIONS: The main threat to dysfunctional mammalian telomeres is degradation of the 3' overhang and subsequent telomere end-joining by DNA ligase IV. The involvement of NHEJ in telomere fusions is paradoxical since the NHEJ factors Ku70/80 and DNA-PKcs are present at telomeres and protect chromosome ends from fusion.  相似文献   

2.
Telomere instability in a human cancer cell line.   总被引:6,自引:0,他引:6  
Telomere maintenance is essential in immortal cancer cells to compensate for DNA lost from the ends of chromosomes, to prevent chromosome fusion, and to facilitate chromosome segregation. However, the high rate of fusion of chromosomes near telomeres, termed telomere association, in many cancer cell lines has led to the proposal that some cancer cells may not efficiently perform telomere maintenance. Deficient telomere maintenance could play an important role in cancer because telomere associations and nondisjunction have been demonstrated to be mechanisms for genomic instability. To investigate this possibility, we have analyzed the telomeres of the human squamous cell carcinoma cell line SQ-9G, which has telomere associations in approximately 75% of the cells in the population. The absence of detectable telomeric repeat sequences at the sites of these telomere associations suggests that they result from telomere loss. The analysis of telomere length by quantitative in situ hybridization demonstrated that, compared to the human squamous cell carcinoma cell line SCC-61 which has few telomere associations, SQ-9G has more extensive heterogeneity in telomere length and more telomeres without detectable telomeric repeat sequences. The dynamics of the changes in telomere length also demonstrated a higher rate of fluctuation in telomere length, both on individual telomeres and coordinately on all telomeres. These results demonstrate that telomere maintenance can play a role in the genomic instability seen in cancer cells.  相似文献   

3.
Telomeres consist of repetitive DNA and associated proteins that protect chromosome ends from illicit DNA repair. It is well known that telomeric DNA is progressively eroded during cell division, until telomeres become too short and the cell stops dividing. There is a second mode of telomere shortening, however, which is a regulated form of telomere rapid deletion (TRD) termed telomere trimming that is reviewed here. Telomere trimming appears to involve resolution of recombination intermediate structures, which shortens the telomere by release of extrachromosomal telomeric DNA. This has been detected in human and in mouse cells and occurs both in somatic and germline cells, where it sets an upper limit on telomere length and contributes to a length equilibrium set-point in cells that have a telomere elongation mechanism. Telomere trimming thus represents an additional mechanism of telomere length control that contributes to normal telomere dynamics and cell proliferative potential.  相似文献   

4.
Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.  相似文献   

5.
Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2   总被引:3,自引:1,他引:2  
The ends of linear chromosomes are capped by protein–DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2.  相似文献   

6.
7.
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.  相似文献   

8.
Telomeres, the nucleoprotein structures at the ends of linear chromosomes, promote genome stability by distinguishing chromosome termini from DNA double‐strand breaks (DSBs). Cells possess two principal pathways for DSB repair: homologous recombination and non‐homologous end joining (NHEJ). Several studies have implicated TRF2 in the protection of telomeres from NHEJ, but the underlying mechanism remains poorly understood. Here, we show that TRF2 inhibits NHEJ, in part, by recruiting human RAP1 to telomeres. Heterologous targeting of hRAP1 to telomeric DNA was sufficient to bypass the need for TRF2 in protecting telomeric DNA from NHEJ in vitro. On expanding these studies in cells, we find that recruitment of hRAP1 to telomeres prevents chromosome fusions caused by the loss of TRF2/hRAP1 from chromosome ends despite activation of a DNA damage response. These results provide the first evidence that hRAP1 inhibits NHEJ at mammalian telomeres and identify hRAP1 as a mediator of genome stability.  相似文献   

9.
Chromosome End Maintenance by Telomerase   总被引:1,自引:0,他引:1  
  相似文献   

10.
Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase–telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC‐based DNA–protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere‐binding protein 1 (HOT1). HOT1 directly and specifically binds double‐stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase‐dependent telomere elongation.  相似文献   

11.
Telomere maintenance is thought to be essential for immortalization of human cancer cells to compensate for the loss of DNA from the ends of chromosomes and to prevent chromosome fusion. We have investigated telomere dynamics in the telomerase-positive squamous cell carcinoma cell line SCC-61 by marking the ends of chromosomes with integrated plasmid sequences so that changes in the length of individual telomeres could be monitored. Despite having very short telomeres, SCC-61 has a relatively stable genome and few telomere associations. The marked telomeres in different SCC-61 clones have similar mean lengths which show little change with increasing time in culture. Thus, each marked telomere is maintained at a specific length, which we term the equilibrium mean length (EML). The Gaussian distribution in the length of the marked telomeres demonstrates that telomeres continuously fluctuate in length. Consistent with this observation, the mean lengths of the marked telomere in subclones of these cell lines initially differ, but then gradually return to the EML of the original clone with increasing time in culture. The analysis of a clone with two marked telomeres demonstrated that changes in telomere length can occur on each marked telomere independently or coordinately on both telomeres. These results suggest that the short telomeres in many tumor cell lines do not result from an inability to properly maintain telomeres at a specific length.  相似文献   

12.
13.
Structure and variability of human chromosome ends.   总被引:77,自引:8,他引:69       下载免费PDF全文
Mammalian telomeres are thought to be composed of a tandem array of TTAGGG repeats. To further define the type and arrangement of sequences at the ends of human chromosomes, we developed a direct cloning strategy for telomere-associated DNA. The method involves a telomere enrichment procedure based on the relative lack of restriction endonuclease cutting sites near the ends of human chromosomes. Nineteen (TTAGGG)n-bearing plasmids were isolated, two of which contain additional human sequences proximal to the telomeric repeats. These telomere-flanking sequences detect BAL 31-sensitive loci and thus are located close to chromosome ends. One of the flanking regions is part of a subtelomeric repeat that is present at 10 to 25% of the chromosome ends in the human genome. This sequence is not conserved in rodent DNA and therefore should be a helpful tool for physical characterization of human chromosomes in human-rodent hybrid cell lines; some of the chromosomes that may be analyzed in this manner have been identified, i.e., 7, 16, 17, and 21. The minimal size of the subtelomeric repeat is 4 kilobases (kb); it shows a high frequency of restriction fragment length polymorphisms and undergoes extensive de novo methylation in somatic cells. Distal to the subtelomeric repeat, the chromosomes terminate in a long region (up to 14 kb) that may be entirely composed of TTAGGG repeats. This terminal segment is unusually variable. Although sperm telomeres are 10 to 14 kb long, telomeres in somatic cells are several kilobase pairs shorter and very heterogeneous in length. Additional telomere reduction occurs in primary tumors, indicating that somatic telomeres are unstable and may continuously lose sequences from their termini.  相似文献   

14.
Telomeres are structures at the ends of chromosomes and are composed of long tracks of short tandem repeat DNA sequences bound by a unique set of proteins (shelterin). Telomeric DNA is believed to form G-quadruplex and D-loop structures, which presents a challenge to the DNA replication and repair machinery. Although the RecQ helicases WRN and BLM are implicated in the resolution of telomeric secondary structures, very little is known about RECQL4, the RecQ helicase mutated in Rothmund-Thomson syndrome (RTS). Here, we report that RTS patient cells have elevated levels of fragile telomeric ends and that RECQL4-depleted human cells accumulate fragile sites, sister chromosome exchanges, and double strand breaks at telomeric sites. Further, RECQL4 localizes to telomeres and associates with shelterin proteins TRF1 and TRF2. Using recombinant proteins we showed that RECQL4 resolves telomeric D-loop structures with the help of shelterin proteins TRF1, TRF2, and POT1. We also found a novel functional synergistic interaction of this protein with WRN during D-loop unwinding. These data implicate RECQL4 in telomere maintenance.  相似文献   

15.
Telomeres are unique chromatin domains located at the ends of eukaryotic chromosomes. Telomere functions in somatic cells involve complexes between telomere proteins and TTAGGG DNA repeats. During the differentiation of germ-line cells, telomeres undergo significant reorganization most likely required for additional specific functions in meiosis and fertilization. A telomere-binding protein complex from human sperm (hSTBP) has been isolated by detergent treatment and was partially purified. hSTBP specifically binds double-stranded telomeric DNA and does not contain known somatic telomere proteins TRF1, TRF2, and Ku. Surprisingly, the essential component of this complex has been identified as a specific variant of histone H2B. Indirect immunofluorescence shows punctate localization of H2B in sperm nuclei, which in part coincides with telomeric DNA localization established by fluorescent in situ hybridization. Anti-H2B antibodies block interactions of hSTBP with telomere DNA, and spH2B forms specific complex with this DNA in vitro, indicating that this protein plays a role in telomere DNA recognition. We propose that hSTBP participates in the membrane attachment of telomeres that may be important for ordered chromosome withdrawal after fertilization.  相似文献   

16.
Telomere formation of the normal and broken chromosomes of common wheat,Triticum aestivum, was investigated byin situ hybridization using the biotin-labeled probe of telomere repetitive sequences (pAtT4) ofArabidopsis thaliana with subsequent amplification by an antibody. After double and triple amplification, prominent signals appeared at all the telomeric regions of the normal chromosomes. Prominent signals also emerged at the broken ends of the telocentric and deletion chromosomes that had passed through more than one generation since the appearance. However, broken ends that had passed through only the stages of gametogenesis, fertilization, embryogenesis and root development did not show complete signals such as found in normal telomeres. These findings indicate that a certain time or stage is required for synthesis of the telomeric repetitive sequences with a complete length. Nevertheless, because the broken ends without complete telomere sequences were also healed, restoration of the normal complement of telomere sequences is not necessary for healing of broken ends.  相似文献   

17.
Telomere directed fragmentation of mammalian chromosomes.   总被引:27,自引:3,他引:24       下载免费PDF全文
Cloned human telomeric DNA can integrate into mammalian chromosomes and seed the formation of new telomeres. This process occurs efficiently in three established human cell lines and in a mouse embryonic stem cell line. The newly seeded telomeres appear to be healed by telomerase. The seeding of new telomeres by cloned telomeric DNA is either undetectable or very inefficient in non-tumourigenic mouse or human somatic cell lines. The cytogenetic consequences of the seeding of new telomeres include large chromosome truncations but most of the telomere seeding events occur close to the pre-existing ends of natural chromosomes.  相似文献   

18.
Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.  相似文献   

19.
Telomeric proteins have an essential role in the regulation of the length of the telomeric DNA tract and in protection against end-to-end chromosome fusion. Telomere organization and how individual proteins are involved in different telomere functions in living cells is largely unknown. By using green fluorescent protein tagging and photobleaching, we investigated in vivo interactions of human telomeric DNA-binding proteins with telomeric DNA. Our results show that telomeric proteins interact with telomeres in a complex dynamic fashion: TRF2, which has a dual role in chromosome end protection and telomere length homeostasis, resides at telomeres in two distinct pools. One fraction ( approximately 73%) has binding dynamics similar to TRF1 (residence time of approximately 44 s). Interestingly, the other fraction of TRF2 binds with similar dynamics as the putative end-protecting factor hPOT1 (residence time of approximately 11 min). Our data support a dynamic model of telomeres in which chromosome end-protection and telomere length homeostasis are governed by differential binding of telomeric proteins to telomeric DNA.  相似文献   

20.
Chromosome ends are protected from degradation by the presence of the highly repetitive hexanucleotide sequence of TTAGGG and associated proteins. These so-called telomeric complexes are suggested to play an important role in establishing a functional nuclear chromatin organization. Using peptide nucleic acid (PNA) probes, we studied the dynamic behavior of telomeric DNA repeats in living human osteosarcoma U2OS cells. A fluorescent cy3-labeled PNA probe was introduced in living cells by glass bead loading and was shown to specifically associate with telomeric DNA shortly afterwards. Telomere dynamics were imaged for several hours using digital fluorescence microscopy. While the majority of telomeres revealed constrained diffusive movement, individual telomeres in a human cell nucleus showed significant directional movements. Also, a subfraction of telomeres were shown to associate and dissociate, suggesting that in vivo telomere clusters are not stable but dynamic structures. Furthermore, telomeres were shown to associate with promyelocytic leukemia (PML) bodies in a dynamic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号