首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to examine the role of the actin cytoskeleton in the development of pressure-induced membrane depolarization and Ca(2+) influx underlying myogenic constriction in cerebral arteries. Elevating intraluminal pressure from 10 to 60 mmHg induced membrane depolarization, increased intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) and elicited myogenic constriction in both intact and denuded rat posterior cerebral arteries. Pretreatment with cytochalasin D (5 microM) or latrunculin A (3 microM) abolished constriction but enhanced the [Ca(2+)](i) response; similarly, acute application of cytochalasin D to vessels with tone, or in the presence of 60 mM K(+), elicited relaxation accompanied by an increase in [Ca(2+)](i). The effects of cytochalasin D were inhibited by nifedipine (3 microM), demonstrating that actin cytoskeletal disruption augments Ca(2+) influx through voltage-sensitive L-type Ca(2+) channels. Finally, pressure-induced depolarization was enhanced in the presence of cytochalasin D, further substantiating a role for the actin cytoskeleton in the modulation of ion channel function. Together, these results implicate vascular smooth muscle actin cytoskeletal dynamics in the control of cerebral artery diameter through their influence on membrane potential as well as via a direct effect on L-type Ca(2+) channels.  相似文献   

2.
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)](i) transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH.  相似文献   

3.
Intestinal mucosal restitution occurs as a consequence of epithelial cell migration and reseals superficial wounds after injury. This rapid reepithelialization is mediated in part by a phospholipase C-gamma1 (PLC-gamma1)-induced Ca(2+) signaling, but the exact mechanism underlying such signaling and its regulation remains elusive. The small GTP-binding protein Rac1 functions as a pivotal regulator of several signaling networks and plays an important role in regulating cell motility. The current study tests the hypothesis that Rac1 modulates intestinal epithelial cell migration after wounding by altering PLC-gamma1-induced Ca(2+) signaling. Inhibition of Rac1 activity by treatment with its inhibitor NSC-23766 or Rac1 silencing with small interfering RNA decreased store depletion-induced Ca(2+) influx and suppressed cell migration during restitution, whereas ectopic overexpression of Rac1 increased Ca(2+) influx and promoted cell migration. Rac1 physically interacted with PLC-gamma1 and formed Rac1/PLC-gamma1 complex in intestinal epithelial cells. PLC-gamma1 silencing in cells overexpressing Rac1 prevented stimulation of store depletion-induced Ca(2+) influx and cell migration after wounding. Polyamine depletion inhibited expression of both Rac1 and PLC-gamma1, decreased Rac1/PLC-gamma1 complex levels, reduced Ca(2+) influx, and repressed cell migration. Overexpression of Rac1 alone failed to rescue Ca(2+) influx after store depletion and cell migration in polyamine-deficient cells, because it did not alter PLC-gamma1 levels. These results indicate that Rac1 promotes intestinal epithelial cell migration after wounding by increasing Ca(2+) influx as a result of its interaction with PLC-gamma1.  相似文献   

4.
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) results from Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through Ca(2+)-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca(2+) entry (CCE) induced by Ca(2+) store depletion represents a major Ca(2+) influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca(2+)-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca(2+) currents and CCE generated by Ca(2+) influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca(2+) channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca(2+)](cyt).  相似文献   

5.
Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca(2+) signaling is crucial for stimulation of IEC migration after wounding, and induced translocation of stromal interaction molecule 1 (STIM1) to the plasma membrane activates TRPC1-mediated Ca(2+) influx and thus enhanced restitution. Here, we show that polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca(2+) signaling by altering the ratio of STIM1 to STIM2. Increasing cellular polyamines by ectopic overexpression of the ornithine decarboxylase (ODC) gene stimulated STIM1 but inhibited STIM2 expression, whereas depletion of cellular polyamines by inhibiting ODC activity decreased STIM1 but increased STIM2 levels. Induced STIM1/TRPC1 association by increasing polyamines enhanced Ca(2+) influx and stimulated epithelial restitution, while decreased formation of the STIM1/TRPC1 complex by polyamine depletion decreased Ca(2+) influx and repressed cell migration. Induced STIM1/STIM2 heteromers by polyamine depletion or STIM2 overexpression suppressed STIM1 membrane translocation and inhibited Ca(2+) influx and epithelial restitution. These results indicate that polyamines differentially modulate cellular STIM1 and STIM2 levels in IECs, in turn controlling TRPC1-mediated Ca(2+) signaling and influencing cell migration after wounding.  相似文献   

6.
Phosphorylation of serine 1928 (Ser(1928)) of the cardiac Ca(v)1.2 subunit of L-type Ca(2+) channels has been proposed as the mechanism for regulation of L-type Ca(2+) channels by protein kinase A (PKA). To test this directly in vivo, we generated a knock-in mouse with targeted mutation of Ser(1928) to alanine. This mutation did not affect basal L-type current characteristics or regulation of the L-type current by PKA and the beta-adrenergic receptor, whereas the mutation abolished phosphorylation of Ca(v)1.2 by PKA. Therefore, our data show that PKA phosphorylation of Ser(1928) of Ca(v)1.2 is not functionally involved in beta-adrenergic stimulation of Ca(v)1.2-mediated Ca(2+) influx into the cardiomyocyte.  相似文献   

7.
Bcl-2 family members are key regulators of apoptosis. Their involvement in other cellular processes has been so far overlooked. We have studied the role of the Bcl-2 homolog Nrz in the developing zebrafish. Nrz was found to be localized to the yolk syncytial layer, a region containing numerous mitochondria and ER membranes. Nrz knockdown resulted in developmental arrest before gastrulation, due to free Ca(2+) increase in the yolk cell, activating myosin light chain kinase, which led to premature contraction of actin-myosin cables in the margin and separation of the blastomeres from the yolk cell. In the yolk syncytial layer, Nrz appears to prevent the release of Ca(2+) from the endoplasmic reticulum by directly interacting with the IP3R1 Ca(2+) channel. Thus, the Bcl-2 family may participate in early development, not only by controlling apoptosis but also by acting on cytoskeletal dynamics and cell movements via Ca(2+) fluxes inside the embryo.  相似文献   

8.
The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic beta-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca(2+)-dependent exocytosis. Simultaneously, GLP-1 promotes Ca(2+) influx and mobilizes an intracellular source of Ca(2+). GLP-1 sensitizes intracellular Ca(2+) release channels (ryanodine and IP (3) receptors) to stimulatory effects of Ca(2+), thereby promoting Ca(2+)-induced Ca(2+) release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K(+) channels (K-ATP), membrane depolarization, and influx of Ca(2+) through voltage-dependent Ca(2+) channels (VDCCs). Ca(2+) influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca(2+) release channels are sensitized by GLP-1, Ca(2+) influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no "fuel" is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new "feed-forward" hypothesis of beta-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects.  相似文献   

9.
Parekh AB 《Cell calcium》2008,44(1):6-13
In eukaryotic cells, one major route for Ca(2+) influx is through store-operated CRAC channels, which are activated following a fall in Ca(2+) content within the endoplasmic reticulum. Mitochondria are key regulators of this ubiquitous Ca(2+) influx pathway. Respiring mitochondria rapidly take up some of the Ca(2+) released from the stores, resulting in more extensive store depletion and thus robust activation of CRAC channels. As CRAC channels open, the ensuing rise in cytoplasmic Ca(2+) feeds back to inactivate the channels. By buffering some of the incoming Ca(2+) mitochondria reduce Ca(2+)-dependent inactivation of the CRAC channels, resulting in more prolonged Ca(2+) influx. However, mitochondria can release Ca(2+) close to the endoplasmic reticulum, accelerating store refilling and thus promoting deactivation of the CRAC channels. Mitochondria thus regulate all major transitions in CRAC channel gating, revealing remarkable versatility in how this organelle impacts upon Ca(2+) influx. Recent evidence suggests that mitochondria also control CRAC channels through mechanisms that are independent of their Ca(2+)-buffering actions and ability to generate ATP. Furthermore, pyruvic acid, a key intermediary metabolite and precursor substrate for the Krebs cycle, reduces the extent of Ca(2+)-dependent inactivation of CRAC channels. Hence mitochondrial metabolism impacts upon Ca(2+) influx through CRAC channels and thus on a range of key downstream cellular responses.  相似文献   

10.
The current study provides biochemical and functional evidence that the targeting of protein kinase A (PKA) to sites of localized Ca(2+) release confers rapid, specific phosphoregulation of Ca(2+) signaling in pancreatic acinar cells. Regulatory control of Ca(2+) release by PKA-dependent phosphorylation of inositol 1,4, 5-trisphosphate (InsP(3)) receptors was investigated by monitoring Ca(2+) dynamics in pancreatic acinar cells evoked by the flash photolysis of caged InsP(3) prior to and following PKA activation. Ca(2+) dynamics were imaged with high temporal resolution by digital imaging and electrophysiological methods. The whole cell patch clamp technique was used to introduce caged compounds and to record the activity of a Ca(2+)-activated Cl(-) current. Photolysis of low concentrations of caged InsP(3) evoked Cl(-) currents that were inhibited by treatment with dibutryl-cAMP or forskolin. In contrast, PKA activators had no significant inhibitory effect on the activation of Cl(-) current evoked by uncaging Ca(2+) or by the photolytic release of higher concentrations of InsP(3). Treatment with Rp-adenosine-3',5'-cyclic monophoshorothioate, a selective inhibitor of PKA, or with Ht31, a peptide known to disrupt the targeting of PKA, largely abolished forskolin-induced inhibition of Ca(2+) release. Further evidence for the targeting of PKA to the sites of Ca(2+) mobilization was revealed using immunocytochemical methods demonstrating that the R(IIbeta) subunit of PKA was localized to the apical regions of acinar cells and co-immunoprecipitated with the type III but not the type I or type II InsP(3) receptors. Finally, we demonstrate that the pattern of signaling evoked by acetylcholine can be converted to one that is more "CCK-like" by raising cAMP levels. Our data provide a simple mechanism by which distinct oscillatory Ca(2+) patterns can be shaped.  相似文献   

11.
Regulation of actin-based cell migration by cAMP/PKA   总被引:10,自引:0,他引:10  
  相似文献   

12.
Using a new fluorescence imaging technique, LAMP, we recently reported that Ca(2+) influx through store operated Ca(2+) channels (SOCs) strongly inhibits cell coupling in primary human fibroblasts (HF) expressing Cx43. To understand the mechanism of inhibition, we studied the involvement of cytosolic pH (pH(i)) and Ca(2+)([Ca(2+)](i)) in the process by using fluorescence imaging and ion clamping techniques. During the capacitative Ca(2+) influx, there was a modest decline of pH(i) measured by BCECF. Decreasing pH(i) below neutral using thioacetate had little effect by itself on cell coupling, and concomitant pH(i) drop with thioacetate and bulk [Ca(2+)(i) rise with ionomycin was much less effective in inhibiting cell coupling than Ca(2+) influx. Moreover, clamping pH(i) with a weak acid and a weak base during Ca(2+) influx largely suppressed bulk pH(i) drop, yet the inhibition of cell coupling was not affected. In contrast, buffering [Ca(2+)(i) with BAPTA, but not EGTA, efficiently prevented cell uncoupling by Ca(2+) influx. We concluded that local Ca(2+) elevation subjacent to the plasma membrane is the primary cause for closing Cx43 channels during capacitative Ca(2+) influx. To assess how Ca(2+) influx affects junctional coupling mediated by other types of connexins, we applied the LAMP assay to Hela cells expressing Cx26. Capacitative Ca(2+) influx also caused a strong reduction of cell coupling, suggesting that the inhibitory effect by Ca(2+) influx may be a more general phenomenon.  相似文献   

13.
14.
Calcium channel blockers inhibit galvanotaxis in human keratinocytes   总被引:1,自引:0,他引:1  
Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al., 1998; J Invest Dermatol 111:751-756). Here we further investigate the role of calcium influx on the directionality and migration speed of keratinocytes during electric field exposure with the use of Ca(2+) channel blockers. A constant, physiological electric field strength of 100 mV/mm was imposed on the cultured cells for 1 h. To determine the role of calcium influx during galvanotaxis we tested the effects of the voltage-dependent cation channel blockers, verapamil and amiloride, as well as the inorganic Ca(2+) channel blockers, Ni(2+) and Gd(3+) and the Ca(2+) substitute, Sr(2+), on the speed and directionality of keratinocyte migration during galvanotaxis. Neither amiloride (10 microM) nor verapamil (10 microM) had any effect on the galvanotaxis response. Therefore, calcium influx through amiloride-sensitive channels is not required for galvanotaxis, and membrane depolarization via K(+) channel activity is also not required. In contrast, Sr(2+) (5 mM), Ni(2+) (1-5 mM), and Gd(3+) (100 microM) all significantly inhibit the directional migratory response to some degree. While Sr(2+) strongly inhibits directed migration, the cells exhibit nearly normal migration speeds. These findings suggest that calcium influx through Ca(2+) channels is required for directed migration of keratinocytes during galvanotaxis and that directional migration and migration speed are probably controlled by separate mechanisms.  相似文献   

15.
Sustained Ca(2+) influx through plasma membrane Ca(2+) released-activated Ca(2+) (CRAC) channels is essential for T cell activation. Since inflowing Ca(2+) inactivates CRAC channels, T cell activation is only possible if Ca(2+)-dependent inactivation is prevented. We have previously reported that sustained Ca(2+) influx through CRAC channels requires both mitochondrial Ca(2+) uptake and mitochondrial translocation towards the plasma membrane in order to prevent Ca(2+)-dependent channel inactivation. Here, we show that morphological changes following formation of the immunological synapse (IS) modulate Ca(2+) influx through CRAC channels. Cell shape changes were dependent on the actin cytoskeleton, and they sustained Ca(2+) entry by bringing mitochondria and the plasma membrane in closer proximity. The increased percentage of mitochondria beneath the plasma membrane following shape changes occurred in all 3 dimensions and correlated with an increase in the amplitude of Ca(2+) signals. The shape change-dependent mitochondrial localization close to the plasma membrane prevented CRAC channel inactivation even in T cells in which dynein motor protein-dependent mitochondria movements towards the plasma membrane were completely abolished, highlighting the importance of the shape change-dependent control of Ca(2+) influx. Our results suggest that morphological changes do not only facilitate an efficient contact with antigen presenting cells but also strongly modulate Ca(2+) dependent T cell activation.  相似文献   

16.
Muallem S 《Current biology : CB》2007,17(14):R549-R551
Receptor-evoked Ca(2+) influx is mediated by store-operated Ca(2+) channels, such as the CRAC channel, which mediates the I(crac) current. Recent work reveals that pyruvate, the precursor substrate for the Krebs cycle, regulates I(crac) to prolong Ca(2+) influx into the cell, thereby coupling oxidation of glucose and its own metabolism in the mitochondria to Ca(2+) influx by the CRAC channel.  相似文献   

17.
The involvement of Ca(2+) in the activation of eggs and in the first steps of the embryonic development of several species is a well-known phenomenon. An association between Ca(2+) sources with the fate of the blastopore during embryonic development has been investigated by several authors. Ca(2+) influx mediated by voltage-gated channels and Ca(2+) mobilization from intracellular stores are the major sources of Ca(2+) to egg activation and succeeding cell divisions. Studies on sea urchins embryonic development show that intracellular Ca(2+) stores are responsible for egg activation and early embryogenesis. In the present work we investigated the involvement of extracellular Ca(2+) in the first stages of the embryonic development of the sea urchin Echinometra lucunter. Divalent cation chelators EDTA and EGTA strongly blocked the early embryonic development. Adding to this, we demonstrated the involvement of voltage-gated Ca(2+) channels in E. lucunter embryogenesis since Ca(2+) channel blockers powerfully inhibited the early embryonic development. Our data also revealed that Ca(2+) influx is crucial for embryonic development during only the first 40?min postfertilization. However, intracellular Ca(2+) remains mandatory to embryonic development 40?min postfertilization, seen that both the intracellular Ca(2+) chelator BAPTA-AM and calmodulin antagonists trifluoperazine and chlorpromazine inhibited the first stages of development when added to embryos culture 50?min postfertilization. Our work highlights the crucial role of extracellular Ca(2+) influx through voltage-gated Ca(2+) channels for the early embryonic development of the sea urchin E. lucunter and characterizes an exception in the phylum Echinodermata.  相似文献   

18.
CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and undergoes sequential proteolytic cleavages in its ectodomain and intramembranous domain. The ectodomain cleavage is triggered by extracellular Ca(2+) influx or the activation of protein kinase C. Here we show that CD44-mediated cell-matrix adhesion is terminated by two independent ADAM family metalloproteinases, ADAM10 and ADAM17, differentially regulated in response to those stimuli. Ca(2+) influx activates ADAM10 by regulating the association between calmodulin and ADAM10, leading to CD44 ectodomain cleavage. Depletion of ADAM10 strongly inhibits the Ca(2+) influx-induced cell detachment from matrix. On the other hand, phorbol ester stimulation activates ADAM17 through the activation of PKC and small GTPase Rac, inducing proteolysis of CD44. Furthermore, depletion of ADAM10 or ADAM17 markedly suppressed CD44-dependent cancer cell migration on HA, but not on fibronectin. The spatio-temporal regulation of two independent signaling pathways for CD44 cleavage plays a crucial role in cell-matrix interaction and cell migration.  相似文献   

19.
The nature of the mechanism underlying store-mediated Ca(2+) entry has been investigated in human platelets through a combination of cytoskeletal modifications. Inhibition of actin polymerization by cytochalasin D or latrunculin A had a biphasic time-dependent effect on Ca(2+) entry, showing an initial potentiation followed by inhibition of Ca(2+) entry. Moreover, addition of these agents after induction of store-mediated Ca(2+) entry inhibited the Ca(2+) influx mechanism. Jasplakinolide, which reorganizes actin filaments into a tight cortical layer adjacent to the plasma membrane, prevented activation of store-mediated Ca(2+) entry but did not modify this process after its activation. In addition, jasplakinolide prevented cytochalasin D-induced inhibition of store-mediated Ca(2+) entry. Calyculin A, an inhibitor of protein serine/threonine phosphatases 1 and 2 which activates translocation of existing F-actin to the cell periphery without inducing actin polymerization, also prevented activation of store-mediated Ca(2+) entry. Finally, inhibition of vesicular transport with brefeldin A inhibited activation of store-mediated Ca(2+) entry but did not alter this mechanism once initiated. These data suggest that store-mediated Ca(2+) entry in platelets may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, which shows close parallels to the events mediating secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号