首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trimetazidine, the known anti-anginal and anti-ischemic drug, was modified by pyrroline and tetrahydropyridine nitroxides and their hydroxylamine and sterically hindered secondary amine precursors. The synthesized new compounds proved to be better superoxide scavenger molecules compared to the parent Trimetazidine in an in vitro experiment. This reactive oxygen species (ROS) scavenging activity was further supported by ischemia/reperfusion (I/R) studies on Langendorff-perfused rat hearts pretreated with Trimetazidine and with the modified Trimetazidine derivatives before ischemia. Two of the investigated compounds, containing 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole and 4-phenyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole substituents on the piperazine ring, provided significant protection from the cardiac dysfunction caused by I/R. The protective effect could be attributed to the combined anti-ischemic and antioxidant effects.  相似文献   

2.
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1?h, followed by 6?h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30?min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.  相似文献   

3.
Luteolin has long been used in traditional Chinese medicine for treatment of various diseases. Recent studies have suggested that administration of luteolin yields cardioprotective effects during ischemia/reperfusion (I/R) in rats. However, the precise mechanisms of this action remain unclear. The aim of this study is to confirm that luteolin-mediated extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways are responsible for their cardioprotective effects during I/R. Wistar rats were divided into the following groups: (i) DMSO group (DMSO); (ii) I/R group (I/R); (iii) luteolin+I/R group (Lut+I/R); (iv) ERK1/2 inhibitor PD98059+I/R group (PD+I/R); (v) PD98059+luteolin+I/R group (PD+Lut+I/R); and (vi) JNK inhibitor SP600125+I/R group (SP+I/R). The following properties were measured: contractile function of isolated heart and cardiomyocytes; infarct size; the release of lactate dehydrogenase (LDH); the percentage of apoptotic cells; the expression levels of Bcl-2 and Bax; and phosphorylation status of ERK1/2, JNK, type 1 protein phosphatase (PP1a), phospholamban (PLB) and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a). Our data showed that pretreatment with luteolin or SP600125 significantly improved the contraction of the isolated heart and cardiomyocytes, reduced infarct size and LDH activity, decreased the rate of apoptosis and increased the Bcl-2/Bax ratio. However, pretreatment with PD98059 alone before I/R had no effect on the above indexes. Further, these consequences of luteolin pretreatment were abrogated by co-administration of PD98059. We also found that pretreatment with PD98059 caused a significant increase in JNK expression, and SP600125 could cause ERK1/2 activation during I/R. In addition, we are the first to demonstrate that luteolin affects PP1a expression, which results in the up-regulation of the PLB, thereby relieving its inhibition of SERCA2a. These results showed that luteolin improves cardiomyocyte contractile function after I/R injury by an ERK1/2-PP1a-PLB-SERCA2a-mediated mechanism independent of JNK signaling pathway.  相似文献   

4.
Ischemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine whether mtHKII can induce the transition from non-injurious to injurious I/R, by detaching HKII from mitochondria during a non-injurious I/R interval. Additionally, we examine possible underlying mechanisms (increased reactive oxygen species (ROS), increased oxygen consumption (MVO2) and decreased cardiac energetics) associated with this transition. Langendorff perfused rat hearts were treated for 20 min with saline, TAT-only or 200 nM TAT-HKII, a peptide that translocates HKII from mitochondria. Then, hearts were exposed to non-injurious 15-min ischemia, followed by 30-min reperfusion. I/R injury was determined by necrosis (LDH release) and cardiac mechanical recovery. ROS were measured by DHE fluorescence. Changes in cardiac respiratory activity (cardiac MVO2 and efficiency and mitochondrial oxygen tension (mitoPO2) using protoporphyrin IX) and cardiac energetics (ATP, PCr, ?GATP) were determined following peptide treatment. When exposed to 15-min ischemia, control hearts had no necrosis and 85% recovery of function. Conversely, TAT-HKII treatment resulted in significant LDH release and reduced cardiac recovery (25%), indicating injurious I/R. This was associated with increased ROS during ischemia and reperfusion. TAT-HKII treatment reduced MVO2 and improved energetics (increased PCr) before ischemia, without affecting MVO2/RPP ratio or mitoPO2. In conclusion, a reduction in mtHKII turns non-injurious I/R into injurious I/R. Loss of mtHKII was associated with increased ROS during ischemia and reperfusion, but not with increased MVO2 or decreased cardiac energetics before damage occurs.  相似文献   

5.
Intestinal ischemia/reperfusion (I/R) leads to bowel impairment via the release of reactive oxygen species (ROS) and neutrophil infiltration. In addition to modulating intestinal integrity, nitric oxide (NO(*)) inhibits neutrophil activation and scavenges ROS. Attenuated endogenous NO(*) formation may result in the accrual of these deleterious stimuli. Therefore, we determined nitric oxide synthase (NOS) activity in anesthetized rats subjected to 1 h of superior mesenteric ischemia or ischemia followed by reflow. NOS activity was measured in intestinal tissue homogenates as the conversion rate of (3)H-L-arginine to (3)H-L-citrulline. Our results demonstrate that intestinal ischemia leads to a decrease in NOS activity indicating lower NO(*) formation in the animal model. The attenuation in NOS activity was not reversed following 4 h of reperfusion. Western blot analysis revealed that the decline in enzyme activity was accompanied by reduced intestinal NOS III (endothelial constitutive NOS) expression. These findings provide biochemical evidence for impaired NO(*) formation machinery in intestinal I/R injury.  相似文献   

6.
Increased oxidative stress and energy metabolism deficit have been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In this study, we investigated the oxidative mechanisms underlying the neuroprotective effects of resveratrol, a potent polyphenol antioxidant found in grapes, on structural and biochemical abnormalities in rats subjected to global cerebral ischemia. Experimental model of transient global cerebral ischemia was induced in Wistar rats by the four vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl and fluoro jade C stained indicated extensive neuronal death at 7 days after I/R. These findings were preceded by a rapid increase in the generation of reactive oxygen species (ROS), nitric oxide (NO), lipid peroxidation, as well as by a decrease in Na+K+-ATPase activity and disrupted antioxidant defenses (enzymatic and non-enzymatic) in hippocampus and cortex. Administrating resveratrol 7 days prior to ischemia by intraperitoneal injections (30 mg/kg) significantly attenuated neuronal death in both studied structures, as well as decreased the generation of ROS, lipid peroxidation and NO content. Furthermore, resveratrol brought antioxidant and Na+K+-ATPase activity in cortex and hippocampus back to normal levels. These results support that resveratrol could be used as a preventive, or therapeutic, agent in global cerebral ischemia and suggest that scavenging of ROS contributes, at least in part, to resveratrol-induced neuroprotection.  相似文献   

7.
Cerebrovascular diseases, including ischemic stroke, are associated with high mortality worldwide. Oxidative stress and inflammation are important pathophysiological mechanisms involved in post-ischemic cerebral injury. The present study was designed to investigate the potential protective effect of diphenyl diselenide (PhSe)2, an organoselenium compound with antioxidant and anti-inflammatory properties, against ischemia/reperfusion (I/R) insult in rat brain. The experimental model adopted was that of surgically-induced brain ischemia, performed by means of bilateral common carotid artery occlusion in rats. The effect of a single oral dose of (PhSe)2 (50 mg/kg), administered 30 min before the onset of ischemia, was investigated by assessing cerebral oxidative stress-related biochemical parameters and pro-inflammatory cytokines in plasma of rats. The results demonstrated an increase in the levels of malondialdehyde (MDA), reactive oxygen species (ROS) and nitrate/nitrite as well as the alteration in the non-enzymatic and enzymatic (catalase and superoxide dismutase) antioxidant defense system induced by I/R insult in rat brain. I/R insult increased the levels of IL-1β, IL-6, TNF-α and INF-γ in plasma of rats. The administration of (PhSe)2 restored cerebral levels of MDA, ROS, nitrate/nitrite and antioxidant defenses of rats exposed to I/R insult. (PhSe)2 markedly reduced pro-inflammatory cytokines in plasma of I/R rats. I/R insult increased the plasma levels of tissue damage markers, such as creatine kinase and α-1-acid glycoprotein. Pretreatment with (PhSe)2 was effective in reducing the levels of these proteins. In addition, (PhSe)2 attenuated cerebral histological alterations induced by I/R. This study showed for the first time the in vivo protective effect of (PhSe)2 against oxidative stress and pro-inflammatory cytokines-induced by I/R insult in rats.  相似文献   

8.
Myocardial ischemia–reperfusion (MI/R) injury is a crucial cause for mortality throughout the world. Recent studies indicated that melatonin might exert profound cardio-protective effect in MI/R injury. However, the underlying mechanisms are not completely understood. In the current study, we aimed to explore the potential effect of melatonin in the pathological process of MI/R. Both in vivo MI/R model and in vitro H9c2 cell line simulated I/R (SIR) model were applied with or without melatonin supplementation. We found that Sirtuin3 (Sirt3) expression and activity were markedly decreased under MI/R and SIR conditions. Melatonin treatment significantly increased myocardial Sirt3 expression, and alleviated MI/R-induced cardiac morphology changes and cardiac dysfunction, as well as myocardial apoptosis level. In addition, DHE and JC-1 staining results demonstrated that melatonin reduced mitochondrial reactive oxygen species (ROS) generation and restored ATP production after SIR injury via elevating Sirt3 expression. By using siRNA targeting Sirt3, we confirmed that the beneficial effects of melatonin were dependent on Sirt3, which in turn deacetylated and activated manganese superoxide dismutase (MnSOD). Collectively, the current study demonstrated the protective effect of melatonin against MI/R injury via alleviating myocardial oxidative stress. Moreover, these beneficial effects were associated with the deacetylation modification of Sirt3 on MnSOD.  相似文献   

9.
Ischemic stroke is a leading cause of mortality and disability worldwide. Nevertheless, its molecular mechanisms have not yet been adequately illustrated. Progranulin (PGRN) is a secreted glycoprotein with pleiotropic functions. In the present study, we found that PGRN expression was markedly reduced in mice after stroke onset through middle cerebral artery occlusion (MCAO). We also showed that necroptosis was a mechanism underlying cerebral I/R injury. Importantly, PGRN knockdown in vivo significantly promoted the infarction volume and neurological deficits scores in mice after MCAO surgery. Necroptosis induced by MCAO was further accelerated by PGRN knockdown, as evidenced by the promoted expression of phosphorylated receptor-interacting protein (RIP) 1 kinase (RIPK1), RIPK3 and mixed lineage kinase domain-like (MLKL), which was accompanied with increased expression of cleaved Caspase-8 and Caspase-3. However, PGRN over-expression was neuroprotective. Additionally, PGRN-regulated ischemic stroke was related to ROS accumulation that MCAO-mice with PGRN knockdown exhibited severe oxidative stress, as proved by the aggravated malondialdehyde (MDA) and lipid peroxidation (LPO) contents, and the decreased superoxide dismutase (SOD) activity. However, PGRN over-expression in mice with cerebral ischemia showed anti-oxidative effects. Finally, PGRN was found to attenuate oxidative damage partly via its regulatory effects on necroptosis. Therefore, promoting PGRN expression could reduced cerebral I/R-induced brain injury by suppressing neroptosis and associated reactive oxygen species (ROS) production. These data elucidated that PGRN might provide an effective therapeutic treatment for ischemic stroke.  相似文献   

10.
《Free radical research》2013,47(10):1210-1217
Abstract

While ischemic preconditioning (IPC) and other cardioprotective interventions have been proposed to protect the heart from ischemia/reperfusion (I/R) injury by inhibiting mitochondrial complex I activity upon reperfusion, the exact mechanism underlying the modulation of complex I activity remains elusive. This study was aimed to test the hypothesis that IPC modulates complex I activity at reperfusion by activating mitochondrial Src tyrosine kinase, and induces cardioprotection against I/R injury. Isolated rat hearts were preconditioned by three cycles of 5-min ischemia and 5-min reperfusion prior to 30-min index ischemia followed by 2 h of reperfusion. Mitochondrial Src phosphorylation (Tyr416) was dramatically decreased during I/R, implying inactivation of Src tyrosine kinase by I/R. IPC increased mitochondrial Src phosphorylation upon reperfusion and this was inhibited by the selective Src tyrosine kinase inhibitor PP2. IPC's anti-infarct effect was inhibited by the selective Src tyrosine kinase inhibitor PP2. Complex I activity was significantly increased upon reperfusion, an effect that was prevented by IPC in a Src tyrosine kinase-dependent manner. In support, Src and phospho-Src were found in complex I. Furthermore, IPC prevented hypoxia/reoxygenation-induced mitochondrial reactive oxygen species (ROS) generation and cellular injury in rat cardiomyocytes, which was revoked by PP2. Finally, IPC reduced LDH release induced by both hypoxia/reoxygenation and simulated ischemia/reperfusion, an effect that was reversed by PP2 and Src siRNA. These data suggest that mitochondrial Src tyrosine kinase accounts for the inhibitory action of IPC on complex I and mitochondrial ROS generation, and thereby plays a role in the cardioprotective effect of IPC.  相似文献   

11.
Ischemic preconditioning (I-PC) induced by brief episodes of ischemia and reperfusion (I/R) protects the heart against sustained I/R. Although activation of mitochondrial K(ATP) channels (mitoK(ATP)) interacting with reactive oxygen species (ROS) has been proposed as a key event in this process, their role in the antiarrhythmic effect is not clear. This study was designed: 1) to investigate the involvement of mito K(ATP) opening in the effect of I-PC (1 cycle of I/R, 5 min each) on ventricular arrhythmias during test ischemia (TI, 30-min LAD coronary artery occlusion) in Langendorff-perfused rat hearts and subsequent postischemic contractile dysfunction, and 2) to characterize potential mechanisms of protection conferred by I-PC and pharmacological PC induced by mito K(ATP) opener diazoxide (DZX), with particular regards to the modulation of ROS generation. Lipid peroxidation (an indicator of increased ROS production) was determined by measurement of myocardial concentration of conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) in non-ischemic controls, non-preconditioned and preconditioned hearts exposed to TI, I-PC alone, as well as after pretreatment with DZX, mito K(ATP) blocker 5-hydroxydecanoate (5-HD) and antioxidant N-acetylcysteine (NAC). Total number of ventricular premature beats (VPB) that occurred in the control hearts (518+/-71) was significantly (P<0.05) reduced by I-PC (195+/-40), NAC (290+/-56) and DZX (168+/-22). I-PC and NAC suppressed an increase in CD and TBARS caused by ischemia indicating lower production of ROS. On the other hand, I-PC and DZX themselves moderately enhanced ROS generation, prior to TI. Bracketing of I-PC with 5-HD suppressed both, ROS production during PC and its cardioprotective effect. In conclusion, potential mechanisms of protection conferred by mito K(ATP) opening in the rat heart might involve a temporal increase in ROS production in the preconditioning phase triggering changes in the pro/antioxidant balance in the myocardium and attenuating ROS production during subsequent prolonged ischemia.  相似文献   

12.
The blood–brain barrier (BBB) forms a protective barrier around the brain, with the important function of maintaining brain homeostasis. Pathways thought to initiate BBB dysfunction include the kinin system, excitotoxicity, neutrophil recruitment, mitochondrial alterations and macrophage/microglial activation, all of which converge on the same point—reactive oxygen species (ROS). Interestingly, ROS also provide a common trigger for many downstream pathways that directly mediate BBB compromise such as oxidative damage, tight junction (TJ) modification and matrix metalloproteinases (MMP) activation. These observations suggest that ROS are key mediators of BBB breakdown and implicate antioxidants as potential neuroprotectants in conditions like stroke and traumatic brain injury (TBI). This review explores some of the pathways both upstream and downstream of ROS that have been implicated in increased BBB permeability and discusses the role of ROS and antioxidants in neuropathology.  相似文献   

13.
Inhibition of oxidative stress has been reported to be involved in the cardioprotective effects of hydrogen sulfide (H(2)S) during ischemia/reperfusion (I/R). However, the mechanism whereby H(2)S regulates the level of cardiac reactive oxygen species (ROS) during I/R remains unclear. Therefore, we investigated the effects of H(2)S on pathways that generate and scavenge ROS. Our results show that pretreating rat neonatal cardiomyocytes with NaHS, a H(2)S donor, reduced the levels of ROS during the hypoxia/reoxygenation (H/R) condition. We found that H(2)S inhibited mitochondrial complex IV activity and increased the activities of superoxide dismutases (SODs), including Mn-SOD and CuZn-SOD. Further studies indicated that H(2)S up-regulated the expression of Mn-SOD but not CuZn-SOD. Using a cell-free system, we showed that H(2)S activates CuZn-SOD. An isothermal titration calorimetry (ITC) analysis indicated that H(2)S directly interacts with CuZn-SOD. Taken together, H(2)S inhibits mitochondrial complex IV and activates SOD to decrease the levels of ROS in cardiomyocytes during I/R.  相似文献   

14.
Ischemic preconditioning (IP) triggers cardioprotection via a signaling pathway that converges on mitochondria. The effects of the inhibition of carnitine palmitoyltransferase I (CPT-I), a key enzyme for transport of long chain fatty acids (LCFA) into the mitochondria, on ischemia/reperfusion (I/R) injury are unknown. Here we investigated, in isolated perfused rat hearts, whether sub-chronic CPT-I inhibition (5 days i.p. injection of 25 mg/kg/day of Etomoxir) affects I/R-induced damages and whether cardioprotection by IP can be induced after this inhibition. Effects of global ischemia (30 min) and reperfusion (120 min) were examined in hearts harvested from Control (untreated), Vehicle- or Etomoxir-treated animals. In subsets of hearts from the three treated groups, IP was induced by three cycles of 3 min ischemia followed by 10 min reperfusion prior to I/R. The extent of I/R injury under each condition was assessed by changes in infarct size as well as in myocardial contractility. Postischemic contractility, as indexed by developed pressure and dP/dt(max), was similarly affected by I/R, and was similarly improved with IP in Control, Vehicle or Etomoxir treated animals. Infarct size was also similar in the three subsets without IP, and was significantly reduced by IP regardless of CPT-I inhibition. We conclude that CPT-I inhibition does not affect I/R damages. Our data also show that IP affords myocardial protection in CPT-I inhibited hearts to a degree similar to untreated animals, suggesting that a long-term treatment with the metabolic anti-ischemic agent Etomoxir does not impede the possibility to afford cardioprotection by ischemic preconditioning.  相似文献   

15.
Recently, the treatment of stroke has focused on antioxidant therapies, where oxidative stress is implicated. The preventive and therapeutic potential of plant compounds on ischemic stroke has been intensively studied because many of them contain antioxidant properties. Genistein, one of the active ingredients in soybean, possesses many bioactivities. In this study, we investigated the potential neuroprotective effects of genistein and its possible mechanism of action in a cerebral ischemia mouse model. Mice were pretreated with genistein (2.5, 5, and 10mg/kg) or vehicle orally once daily for 14 consecutive days before transient middle cerebral artery occlusion was performed. Genistein at doses of 2.5-10mg/kg significantly reduced the infarct volume, improved the neurological deficit and prevented cell apoptosis after ischemia. In addition, genistein pretreatment was shown to inhibit the ischemia-induced reactive oxygen species (ROS) production, enhance the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), and decrease levels of malondialdehyde (MDA) in stroke mice. Moreover, genistein reversed the mitochondria dysfunction after ischemia, as evidenced by decreasing mitochondria ROS levels, preventing cytochrome C release to the cytoplasm and inhibiting caspase-3 activation. Western blotting showed ischemia activated the ROS-dependent nuclear factor-κB (NF-κB) signaling pathway, and genistein suppressed phosphorylation and activation of the NF-κB p65 subunit, as well as the phosphorylation and degradation of the inhibitor protein of κBα (IκBα). Our findings suggested that genistein has a neuroprotective effect in transient focal ischemia, which may involve regulation of mitochondria-dependent apoptosis pathways and suppression of ROS-induced NF-κB activation.  相似文献   

16.
Activation of cardiac STAT3 by IL-6 cytokine family contributes to cardioprotection. Previously, we demonstrated that IL-11, an IL-6 cytokine family, has the therapeutic potential to prevent adverse cardiac remodeling after myocardial infarction; however, it remains to be elucidated whether IL-11 exhibits postconditioning effects. To address the possibility that IL-11 treatment improves clinical outcome of recanalization therapy against acute myocardial infarction, we examined its postconditioning effects on ischemia/reperfusion (I/R) injury. C57BL/6 mice were exposed to ischemia (30 min) and reperfusion (24 h), and IL-11 was intravenously administered at the start of reperfusion. I/R injury mediated the activation of STAT3, which was enhanced by IL-11 administration. IL-11 treatment reduced I/R injury, analyzed by triphenyl tetrazolium chloride staining [PBS, 46.7 ± 14.4%; IL-11 (20 μg/kg), 28.6 ± 7.5% in the ratio of infarct to risk area]. Moreover, echocardiographic and hemodynamic analyses clarified that IL-11 treatment preserved cardiac function after I/R. Terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining revealed that IL-11 reduced the frequency of apoptotic cardiomyocytes after I/R. Interestingly, IL-11 reduced superoxide production assessed by in situ dihydroethidium fluorescence analysis, accompanied by the increased expression of metallothionein 1 and 2, reactive oxygen species (ROS) scavengers. Importantly, with the use of cardiac-specific STAT3 conditional knockout (STAT3 CKO) mice, it was revealed that cardiac-specific ablation of STAT3 abrogated IL-11-mediated attenuation of I/R injury. Finally, IL-11 failed to suppress the ROS production after I/R in STAT3 CKO mice. IL-11 administration exhibits the postconditioning effects through cardiac STAT3 activation, suggesting that IL-11 has the clinical therapeutic potential to prevent I/R injury in heart.  相似文献   

17.
Ischemic preconditioning (IP) has been shown to protect the lung against ischemia-reperfusion (I/R) injury. Although the production of reactive oxygen species (ROS) has been postulated to play a crucial role in I/R injury, the sources of these radicals in I/R and the mechanisms of protection in IP remain unknown. Since it was postulated that deamination of endogenous and exogenous amines by semicarbazide-sensitive amine oxidase (SSAO) in tissue damage leads to the overproduction of hydrogen peroxide (H2O2), we investigated the possible contribution of tissue SSAO to excess ROS generation and lipid peroxidation during I/R and IP of the lung. Male Wistar rats were randomized into 6 groups: control lungs were subjected to 30 min of perfusion in absence and presence of SSAO inhibitor, whereas the lungs of the I/R group were subjected to 2 h of cold ischemia following the 30 min of perfusion in absence and presence of SSAO inhibitor. IP was performed by two cycles of 5 min ischemia followed by 5 min of reperfusion prior to 2 h of hypothermic ischemia in absence and presence of SSAO inhibitor. Lipid peroxidation, reduced (GSH) and oxidized (GSSG) glutathione levels, antioxidant enzyme activities, SSAO activity, and H2O2 release were determined in tissue samples of the study groups. Lipid peroxidation, glutathione disulfide (GSSG) content, SSAO activity and H2O2 release were increased in the I/R group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were decreased. SSAO activity, H2O2 release, GSSG content and lipid peroxidation were markedly decreased in the IP group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were significantly increased. SSAO activity was found to be positively correlated with H2O2 production in all study groups. Increased lipid peroxidation, SSAO activity, GSSG and H2O2 contents as well as decreased GSH and antioxidant enzyme levels in I/R returned to their basal levels when IP and SSAO inhibition were applied together. The present study suggests that application of IP and SSAO inhibition together may be more effective than IP alone against I/R injury in the lung.  相似文献   

18.
Abstract

Ischemia-reperfusion (I/R) is a condition leading to serious complications due to death of cardiac myocytes. We used the cardiomyocyte-like cell line H9c2 to study the mechanism underlying cell damage. Exposure of the cells to simulated I/R lead to their apoptosis. Over-expression of Bcl-2 and Bcl-xL protected the cells from apoptosis while over-expression of Bax sensitized them to programmed cell death induction. Mitochondria-targeted coenzyme Q (mitoQ) and superoxide dismutase both inhibited accumulation of reactive oxygen species (ROS) and apoptosis induction. Notably, mtDNA-deficient cells responded to I/R by decreased ROS generation and apoptosis. Using both in situ and in vivo approaches, it was found that apoptosis occurred during reperfusion following ischemia, and recovery was enhanced when hearts from mice were supplemented with mitoQ. In conclusion, I/R results in apoptosis in cultured cardiac myocytes and heart tissue largely via generation of mitochondria-derived superoxide, with ensuing apoptosis during the reperfusion phase.  相似文献   

19.
Wang C  Pei A  Chen J  Yu H  Sun ML  Liu CF  Xu X 《Journal of neurochemistry》2012,121(6):1007-1013
Previous studies have demonstrated that a natural coumarin compound esculetin (Esc) possesses antioxidant, anti-tumor, and anti-inflammation activities and rescues cultured primary neurons from NMDA toxicity. In this study, we investigated the neuroprotective effects of Esc on cerebral ischemia/reperfusion (I/R) injury in a middle cerebral artery occlusion model in mice. Esc (20 μg) was administered intracerebroventricularly at 30 min before ischemia. We found that Esc significantly reduced infarct volume and decreased neurological deficit scores after 75 min of ischemia and 24 h of reperfusion. Post-treatment of Esc still provided neuroprotection even when Esc was administered after 4 h of reperfusion. Our data also indicated that intraperitoneal administration of Esc showed protective effects on cerebral I/R injury in a dose-dependent manner. We further explored the protective mechanisms of Esc on cerebral I/R injury and found that Esc decreased cleaved caspase 3 level, a marker of apoptosis. Finally, our data demonstrated that Esc exerted its anti-apoptotic activity by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax, two apoptosis-related proteins. Because of its clinical use as an anticoagulant and its safety profile, Esc may have a therapeutic potential for the treatment of stroke in the future clinical trials.  相似文献   

20.
To clarify the relationship between reactive oxygen species (ROS) and cell death during ischemia-reperfusion (I/R), we studied cell death mechanisms in a cellular model of I/R. Oxidant stress during simulated ischemia was detected in the mitochondrial matrix using mito-roGFP, a ratiometric redox sensor, and by Mito-Sox Red oxidation. Reperfusion-induced death was attenuated by over-expression of Mn-superoxide dismutase (Mn-SOD) or mitochondrial phospholipid hydroperoxide glutathione peroxidase (mito-PHGPx), but not by catalase, mitochondria-targeted catalase, or Cu,Zn-SOD. Protection was also conferred by chemically distinct antioxidant compounds, and mito-roGFP oxidation was attenuated by NAC, or by scavenging of residual O2 during the ischemia (anoxic ischemia). Mitochondrial permeability transition pore (mPTP) oscillation/opening was monitored by real-time imaging of mitochondrial calcein fluorescence. Oxidant stress caused release of calcein to the cytosol during ischemia, a response that was inhibited by chemically diverse antioxidants, anoxia, or over-expression of Mn-SOD or mito-PHGPx. These findings suggest that mitochondrial oxidant stress causes oscillation of the mPTP prior to reperfusion. Cytochrome c release from mitochondria to the cytosol was not detected until after reperfusion, and was inhibited by anoxic ischemia or antioxidant administration during ischemia. Although DNA fragmentation was detected after I/R, no evidence of Bax activation was detected. Over-expression of the anti-apoptotic protein Bcl-XL in cardiomyocytes did not confer protection against I/R-induced cell death. Moreover, murine embryonic fibroblasts with genetic depletion of Bax and Bak, or over-expression of Bcl-XL, failed to show protection against I/R. These findings indicate that mitochondrial ROS during ischemia triggers mPTP activation, mitochondrial depolarization, and cell death during reperfusion through a Bax/Bak-independent cell death pathway. Therefore, mitochondrial apoptosis appears to represent a redundant death pathway in this model of simulated I/R. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号