首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of multiple forms of protein kinase C (PK-C) was studied in regenerating rat liver using hydroxyapatite column chromatography. Two forms of the enzyme were found in the cytosolic as well as membrane fraction of livers from partially hepatectomized rats. The kinetic variation in the activation of these two liver isozymes by fatty acids, phosphatidylserine and diacylglycerol was similar to that reported for the PK-C subspecies from rat brain, designated types II and III. Intracellular redistribution of PK-C caused by phorbol 12-myristate 13-acetate (PMA) was concentration-dependent and was due to translocation of isozyme III, because type II was insensitive to 5 x 10(-8) M PMA. The activity ratio of the two isozymes in either the particulate or cytosolic fraction was the same at 22 h as compared to 4 h after partial hepatectomy.  相似文献   

2.
To assess the role of protein kinase-C (PK-C) in the growth and differentiation of small intestinal enterocytes, IEC-6 cells (a cell line derived from the crypts of rat small intestine) were incubated with factors known to induce growth (insulin, epidermal growth factor, gastrin, somatostatin and transferrin) or differentiation (transforming growth factor-beta, retinoic acid and phorbol 12-myristate 13-acetate (PMA)). Cell proliferation (3H-thymidine incorporation) and PK-C activity (Ca++/phospholipid dependent) were measured. Among growth promoting factors only epidermal growth factor, insulin and transferrin were associated with increased 3H-thymidine incorporation, and none of these agents induced PK-C activation as measured by its translocation from cytosol to membrane fraction. Of the differentiation inducing factors, only PMA translocated PK-C from cytosol to membrane. PMA also inhibited 3H-thymidine incorporation in a dose dependent manner. These results suggest that growth and proliferation of enterocytes occur independent of PK-C signal transduction.  相似文献   

3.
Interleukin 2 (IL-2) production and recognition are clearly involved in the age-associated proliferative defect of mitogen-stimulated T lymphocytes. The external signal delivered by mitogens is transmitted across the membrane via the release of two messenger molecules, diacylglycerol and inositol 1,4,5-trisphosphate (IP3), involved in the activation of protein kinase C (PK-C) and the elevation of cytosolic free Ca2+. In that Ca2+ mobilization and PK-C activation appear to be crucial events in the production of IL-2 and the expression of IL-2 receptors, a defect in transmembrane signaling would result in decreased synthesis and response to IL-2. We therefore examined PK-C activity and translocation, generation of inositol 1,4,5-trisphosphate, and cytosolic Ca2+ levels as a function of age in murine G0 T lymphocytes before and after exposure to mitogenic doses of concanavalin A (Con A). The basal levels and distribution of PK-C before and after direct activation of the enzyme by 2 or 20 nM phorbol myristate acetate were comparable in both age groups indicating no inherent age-associated functional defect in the enzyme. However, the Con A-induced PK-C translocation was reduced by 50% in cells from 24-mo-old animals. The Con A stimulation of G0 T lymphocytes increased free cytoplasmic Ca2+ concentration ([Ca2+]i) and the production of inositol phosphates to the same level, irrespective of the age of the donor. However, basal levels of both of these second messengers were consistently higher in lymphocytes derived from old mice. As a result, the net increase in inositol phosphates and [Ca2+]i was reduced by approximately the same extent as that observed for the translocation of PK-C. These results clearly point to an age-associated defect in the generation of phosphoinositide-derived second messengers and indicate that an alteration in signal transduction plays a primary role in the age-related impairment of the mitogen-induced, IL-2-mediated proliferative response of T lymphocytes.  相似文献   

4.
Nuclear matrix isolated from murine erythroleukemia cells (Friend cells) has been phosphorylated with gamma 32P-ATP and purified protein kinase C in order to identify specific nuclear substrates for the enzyme. HMBA has been employed to induce the cell to differentiate and to compare the changes of phosphorylation profile after erythroid differentiation. Lamin B has been found to be hyperphosphorylated by rat brain PK-C in nuclear matrix purified from uninduced cells. This difference characterizes the cells from 14 to 72 hrs of HMBA treatment and indicates that the ability of lamin B to be phosphorylated by PK-C is linked to the differentiated state. The involvement of PK-C in lamin phosphorylation might represent an early step of the signalling pathway utilized by erythroid differentiating agents to target the cell nucleus.  相似文献   

5.
Bryostatin 1 (Bryo), a macrocyclic lactone, stimulates some but not all of the biologic effects which are induced by phorbol esters (PEs). In vitro, it competes with PEs for binding to whole cells and activates the calcium/phospholipid-dependent protein kinase, PK-C. To examine whether Bryo, like PEs, is able to stimulate the nonadherent growth of cells, we used the mouse epidermal cell line JB6, which is stimulated by PEs to grow in soft agar. Like PEs, Bryo stimulates both the adherent and nonadherent growth of these cells, but Bryo (0.001-1 microM) is less active than equivalent concentrations of PEs. To attempt to explain the biologic differences between these two agents, we examined the modulation of PK-C by both PEs and Bryo. In a phosphotransferase assay using partially purified PK-C from JB6 cells, Bryo (1-0.001 microM) stimulated less phosphorylation of histone substrate than did PMA. Also, when whole cells were treated with equal concentrations of Bryo or PMA, Bryo stimulated a decreased loss of PK-C from the cytosol. Using purified isozymes of PK-C from rat brain, Bryo demonstrated identical competition to PMA for binding to forms alpha and gamma but decreased binding to form beta. Hydroxylapatite chromatography of JB6 cytosol demonstrated that these cells contain largely peak 2, or beta-PK-C. Although Bryo more weakly activates PK-C from JB6 cells, prolonged exposure of JB6 cells to either 1.0 or 0.01 microM Bryo caused a more rapid loss of immunologically detectable PK-C than did similar concentrations of PEs. We conclude that Bryo is capable of stimulating both the nonadherent and the adherent growth of JB6 cells in a similar fashion to phorbol esters. The differences in biologic effects of Bryo and PMA may be partially explained by Bryo's modulation of PK-C.  相似文献   

6.
The environmental contaminant di(2-ethylhexyl)phthalate (DEHP) has been shown to inhibit the phosphorylation of histone by purified protein kinase C (PK-C) from rat brain in a concentration-dependent manner. The inhibition does not involve making the substrate unavailable, although DEHP does bind to some extent to histone. DEHP displaces phorbol dibutyrate from PK-C, indicating that DEHP binds to the regulatory domain of the enzyme. Since DEHP does not affect the PK-C dependent phosphorylation of protamine, DEHP probably does not bind at the catalytic site. DEHP non-competitively blocked activation of PK-C by either phosphatidyl serine or calcium ion. Inhibition of histone phosphorylation by DEHP was enhanced if diglyceride was present, and the enhancement was stereoselective for the isomeric form of the diglyceride. The mechanism of the inhibition is thought to involve interference with the interaction between calcium ion and the regulatory domain of PK-C, and would have significance only for those PK-C substrates that require calcium activation of the enzyme. Thus the presence of DEHP in the high nanomolar concentration range alters the effective substrate specificity of PK-C.  相似文献   

7.
In cell-free extracts of rat liver macrophages (Kupffer cells) phospholipase A2 was found to be rapidly associated with the particulate fraction in a Ca(2+)-dependent manner at Ca2+ concentrations of 0.1-1.0 microM. This is also the range of the levels of intracellular Ca2+ reported for basal and various stimulated conditions. After translocation, phospholipase A2 could be released from the membranes in the presence of Ca2+ chelators, increasing the specific activity of phospholipase A2 in the supernatant fraction. These findings support the view that translocation is a regulatory mechanism of phospholipase A2 by bringing the enzyme to its substrate. Unlike the situation with protein kinase C, Mg2+ exerted little effect on phospholipase A2 translocation, indicating that this process is regulated in vivo mainly by fluctuations of the intracellular Ca2+ content.  相似文献   

8.
Stimulation of hepatocytes by the tumor promoter phorbol 12-myristate 13-acetate (PMA) caused translocation of cytosolic Ca2+/phospholipid-dependent protein kinase C (PK-C). The major part of PK-C activity (greater than 80%) was associated with the membrane fraction after 30 min. During the following 6 h protein kinase C activity decreased to less than 10%. Minor amounts of Ca2+/phospholipid-independent PK-C activity were found in the cytosol fraction at all times; they temporarily increased 2.5-fold with PMA and decreased after 1 h. Cyclosporin A did not affect the translocation of PK-C from the cytoplasm to the membrane fraction, but the decrease of PK-C activity following translocation was blocked. No marked increase of Ca2+/phospholipid-independent PK-C activity was observed in the cytosol in the presence of cyclosporin A. Leupeptin, which is known to inhibit Ca2+-requiring non-lysosomal proteinases (e.g. calpain), showed an effect similar to cyclosporin A. Both agents reduced proteolytic degradation of cellular proteins observed in isolated hepatocytes after PMA treatment. Ca2+-ionophore A23187 in high doses (greater than 10(5) M) partly reversed cyclosporin A and leupeptin action.  相似文献   

9.
Inhibition of acetoacetyl-CoA synthetase from rat liver by fatty acyl-CoAs   总被引:1,自引:0,他引:1  
The activity of acetoacetyl-CoA synthetase from rat liver was found to be negatively regulated by coenzyme A, fatty acyl-CoAs and acetoacetyl-CoA in vitro. With increasing concentrations of coenzyme A (substrate inhibition occurring at concentrations higher than 50 microM) the pH optimum shifted toward the acidic side (7.5-8.5 with 5 microM coenzyme A and 6.5-7.0 with 500 microM coenzyme A), in parallel with progressively decreasing enzyme activity. Fatty acyl-CoAs of various chain lengths dose-dependently inhibited acetoacetyl-CoA synthetase from rat liver, but much less effectively a similar enzyme from a bacterium, Zoogloea ramigera I-16-M. Palmitoyl-CoA, the most potent inhibitor of the rat liver enzyme, with an apparent Ki value of 9.8 microM, apparently inhibited the enzyme below its critical micellar concentration, not due to its detergent action. Acetoacetyl-CoA showed product inhibition with a Ki value of 15 microM. These results suggest a possible physiological regulation mechanism for this enzyme with respect to fatty acid biosynthesis.  相似文献   

10.
Association of protein kinase C activation with IL 2 receptor expression   总被引:7,自引:0,他引:7  
Tac antigen (as a measure of the IL 2 receptor) acquisition and regulation by IL 2, an antigen-receptor agonist (anti-T3), phorbol esters, and phytohemagglutinin (PHA) were studied. Phorbol esters stimulated de novo acquisition of Tac antigen, which was associated with the subcellular redistribution of protein kinase C (PK-C) from cytosol to particulate membranes of human T lymphocytes. PHA and anti-T3 (alpha-T3) antibody also stimulated a transient redistribution and activation of PK-C that reached a maximum within 20 min after stimulation. Both phorbol esters and alpha-T3 could increase Tac expression and stimulate PK-C translocation on 5 and 12 day activated T cells that were at the G0/G1 stage of the cell cycle due to IL 2 deprivation. Tac antigen-specific mRNA was seen in the nucleus within 2 hr after stimulation. In contrast, IL 2 alone could only increase Tac expression and stimulate PK-C translocation on day 5 but not day 12 activated T cells. IL 2 synergizes with alpha-T3 and phorbol ester for the regulation of Tac expression. Although IL 2 increased expression of Tac, the majority if not all of these receptors possessed low affinity for IL 2. These data suggest that the activation of PK-C is a common transmembrane signal shared by IL 2 and antigen stimulation. The results also imply that PK-C activation is necessary for the regulation of Tac antigen expression.  相似文献   

11.
K Gale 《Life sciences》1984,34(7):701-706
[3H]Gamma-vinyl-GABA, an irreversible inhibitor of GABA-transaminase, was used to label the enzyme in homogenates of rat brain. The binding procedure utilized was found to be specific for GABA-transaminase and linear with tissue obtained from several regions of rat brain up to concentrations of 8 micrograms protein/microliter. The specific binding was directly proportional to the activity of the enzyme measured in vitro and was completely inhibited by the GABA-transaminase inhibitors aminooxyacetic acid (100 microM) and 3-mercaptopropionic acid (1.0mM). The binding procedure was used to estimate the amount of active enzyme present in a homogenate of striatal tissue.  相似文献   

12.
Nishida S  Satoh H 《Life sciences》2006,79(12):1203-1206
Vasodilating actions of sinomenine were examined using rat aorta ring strips. Sinomenine (0.1 to 100 microM) dilated norepinephrine (NE, 5 microM)-induced vasoconstriction in a concentration-dependent manner reaching 68.8+/-5.1% (n=6, P<0.01) at a concentration of 100 microM. Sinomenine (100 microM) also attenuated KCl (60 mM) and phorbol 12, 13-dibutyrate (PDB, a protein kinase C, PK-C, activator, 300 nM)-induced vasoconstriction by 86.9+/-8.5% (n=6, P<0.01) and 49.9+/-9.8% (n=6, P<0.01), respectively. Pretreatment with nicardipine (a Ca2+ channel antagonist), staurosporine (a PK-C inhibitor), NG-monomethyl-L-arginine acetate (L-NMMA, a nitric oxide, NO, synthesis inhibitor), and indomethacin (a cyclooxygenase inhibitor) were carried out. Nicardipine (0.1 microM) led to a significant decrease in the vasodilating potential of sinomenine (at 100 microM, 68.8+/-5.1% vs. 35.5+/-6.9%; n=5, P<0.001). Pretreatment with staurosporine (30 nM) reduced sinomenine-associated vasodilation from 68.8+/-5.1% to 49.5+/-7.7% (n=5, P<0.001), and L-NMMA (100 microM) and indomethacin (10 microM), to 25.3+/-2.3% (n=5, P<0.001) and to 37.1+/-9.3% (n=5, P<0.001), respectively. The responses were almost similar to the results without endothelium. Therefore, these results indicate that sinomenine causes the vasorelaxation by the mechanisms involved with the inhibitions of Ca2+ channel and PK-C activity, and also with the activations of NO and prostaglandin (PG) I2 syntheses in endothelium.  相似文献   

13.
Abstract. In neutrophils, the phorbol ester 12- O -tetrade-canoylphorbol-l3-acetate (TPA) induced the translocation of the Ca++- and phospholipid-dependent protein kinase, protein kinase C (PK-C) from the soluble to the particulate fraction. At the same time there was a corresponding increase in the amount of Ca++- and phospholipid-independent protein kinase activity recovered in the soluble fraction. This soluble Ca++- and phospholipid-independent protein kinase presumably reflects proteolytic activation of the particulate associated PK-C. Bone marrow and undifferentiated HL-60 cells also translocated PK-C to the particulate fraction in response to TPA but did not accumulate the soluble Ca++- and phospholipid-independent form of the enzyme. Similar results were obtained using HL-60 cells induced to differentiate with dimethyl sulphoxide (DMSO), recombinant human granulocyte-macrophage colony-stimulating factor (rh GM-CSF) or la,25-dihydroxyvitamin D3. There was also no significant change in either the number or time of expression of differentiation-specific cell surface antigens observed on HL-60 cells induced to differentiate with either DMSO, 1α,25-dihydroxyvitamin D3 or TPA in the presence of cyclosporin A, an agent reported to inhibit the proteolytic breakdown of PK-C to the Ca++- and phospholipid-independent form. Likewise, cyclosporin A did not affect the rate or extent of differentiation of primary bone marrow cell cultures. These results suggest that the proteolytically activated and phospholipid-independent form of PK-C is probably not involved in haemopoietic cell differentiation.  相似文献   

14.
15.
16.
Insulin (63 microM) stimulated endogenous dopamine (DA) release from tuberoinfundibular neurons. This effect was independent on the presence of extracellular glucose and did not involve the outward transport of DA, mediated by its membrane carrier. By contrast this effect was completely prevented by the removal of extracellular Ca++ ions in presence of the Ca(++)-chelator ethyleneglycol-2-(2-aminoethyl)-tetracetic acid (EGTA). Furthermore 1-(5-isoquinolinyl-sulfonyl)-2-methyl-piperazine (H7), a compound which behaves as a putative inhibitor of protein kinase C (PK-C) (10 microM), completely counteracted the stimulation of endogenous DA release induced by insulin. Amiloride (300 microM) and its 5-amino nitrogen atom-substituted derivative, 5-(N-methyl-N-(guanidinocarbonylmethyl) amiloride (MGCMA) (10 microM), a highly selective inhibitor of the Na(+)-H+ membrane antiporter, were both able to prevent the stimulatory action exerted by insulin on endogenous DA release. Collectively, these results suggest that the transductional events by which insulin stimulated endogenous DA release from TIDA neurons may involve the activation of PK-C, the enhancement of Ca++ influx and the stimulation of the Na(+)-H+ exchange system.  相似文献   

17.
The role of protein kinase C (PK-C) in the early metabolic events involved in human natural killer (NK) cell activation has been studied through the action of PK-C-specific activators and inhibitors. Highly purified human large granular lymphocytes (LGL) were treated for 1 hr with the diacylglycerol analog 1-oleoyl-2-acetyl glycerol (OAG) (10(-4)-10(-5) g/ml) or with 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-8)-10(-10) g/ml), both specific activators of PK-C. Both these agents consistently increased NK activity against K562 target cells. Suboptimal doses of either OAG or TPA also synergized with Ca2+ ionophores to augment spontaneous cytotoxic activity. Pretreatment of LGL with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrocloride (H7) (5-40 microM), a potent PK-C inhibitor, greatly reduced NK activity in a time- and dose-dependent fashion. By contrast, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride (HA 1004), a potent cAMP- and cGMP-dependent PK inhibitor with almost no effect on PK-C, marginally reduced NK activity. Moreover, almost complete NK activity inhibition was observed when H7 (10 microM), but not HA 1004 (50 microM), was present in the NK assay. Finally, 48 hr stimulation of LGL with TPA (10(-6) g/ml), a treatment able to inactivate most of the PK-C cellular pool, almost completely abrogated NK activity. This functional evidence was supported by phosphorylation of several endogenous substrates which occurs within 5 min in TPA-treated LGL. Two proteins of 70 and 56 kDa have been identified as major PK-C substrates, together with other phosphorylated proteins with MW ranging from 177 to 43 kDa. H7, but not HA 1004, almost completely inhibited the TPA-induced phosphorylation of all of these proteins in the NK cells. These data strongly suggest that selective activation of PK-C plays an essential role in the mechanisms of NK cell activation.  相似文献   

18.
Effects of protein kinase inhibitors on pig oocyte maturation in vitro.   总被引:1,自引:0,他引:1  
Normal oocyte maturation depends on signal transmission between granulosa cells and the oocyte. We have analysed the effects of inhibiting (I) cyclic AMP-dependent protein kinase (protein kinase A, PK-A), (II) Ca2+/phospholipid-dependent protein kinase (protein kinase C, PK-C) and (III) calmodulin (CaM) on pig oocyte maturation in vitro, protein synthesis and phosphorylation. The inhibition of PK-A using a specific inhibitor H8, decreased the maturation rate (rate of germinal vesicle breakdown, GVBD) of cumulus-enclosed pig oocytes in a dose-dependent manner by approximately 12%, reaching a plateau at 100 microM. The inhibition of PK-C with H7, an inhibitor with some side-effects on PK-A, decreased the maturation rate of cumulus-enclosed oocytes in a dose-dependent manner to a maximum of 20% at a concentration of 100 microM. The calmodulin antagonist W7 up to a concentration of 200 microM had no effects on maturation of cumulus-enclosed pig oocytes. None of the inhibitors (H7, H8 and W7) altered the patterns of protein synthesis of either pig oocytes and cumulus cells after maturation in vitro. Oocyte phosphoprotein patterns were, however, clearly changed by W7. Cumulus cell protein phosphorylation patterns were changed by all 3 agents. Since inhibition of cyclic AMP and Ca2+ phospholipid pathways by PK-A and PK-C blocking chemicals affected only a limited proportion of oocytes (12 and 20%, respectively) and inhibition of Ca2+ binding to CaM was without effect on oocyte maturation, we conclude that these pathways modulate rather than regulate oocyte maturation in the pig.  相似文献   

19.
Carbachol (CCh), a muscarinic agonist that elicits the formation of inositol trisphosphate (IP3) and diacylglycerol (DG), induces a calcium-dependent [3H]norepinephrine ([3H]NE) release [IC50 = (2.7 +/- 0.5) X 10(-4) M] in rat brain slices. Similarly, other muscarinic agonists evoke [3H]NE release which is specifically inhibited by muscarinic antagonists such as 3-quinuclidinyl benzilate, atropine, and N-methyl-4-piperidyl benzilate. The atropine-sensitive evoked release is effectively inhibited by neomycin (IC50 = 50 microM), a phospholipase C inhibitor that interferes with IP3-dependent cellular processes. In addition, polymyxin B, a rather selective inhibitor of protein kinase C (PK-C), abolishes the agonist-mediated release with a half-maximal effective concentration of 0.53 microM (750 ng/ml). These results have a significant implication for the mechanism by which agonists generating IP3 and DG act as inducers of neurotransmitter release in the CNS. However, since both neomycin and polymyxin B act also as N-calcium-channel blockers, other possible mechanisms are discussed. The CCh-induced release suggests that in the CNS an agonist-receptor interaction leads to a calcium-dependent neurotransmitter release, most likely via promoting the IP3/DG as second messengers followed by activation of PK-C.  相似文献   

20.
Mitochondrially-bound dihydroorotate dehydrogenase (EC 1.3.99.11) catalyzes the fourth sequential step in the de novo synthesis of uridine monophosphate. The enzyme has been identified as or surmised to be the pharmacological target for isoxazol, triazine, cinchoninic acid and (naphtho)quinone derivatives, which exerted antiproliferative, immunosuppressive, and antiparasitic effects. Despite this broad spectrum of biological and clinical relevance, there have been no comparative studies on drug-dihydroorotate dehydrogenase interactions. Here, we describe a study of the inhibition of the purified recombinant human and rat dihydroorotate dehydrogenase by ten compounds. 1,4-Naphthoquinone, 5,8-hydroxy-naphthoquinone and the natural compounds juglon, plumbagin and polyporic acid (quinone derivative) were found to function as alternative electron acceptors with 10-30% of control enzyme activity. The human and rat enzyme activity was decreased by 50% by the natural compound lawsone ( > 500 and 49 microM, respectively) and by the derivatives dichloroally-lawsone (67 and 10 nM), lapachol (618 and 61 nM) and atovaquone (15 microM and 698 nM). With respect to the quinone co-substrate of the dihydroorotate dehydrogenase, atovaquone (Kic = 2.7 microM) and dichloroally-lawsone (Kic = 9.8 nM) were shown to be competitive inhibitors of human dihydroorotate dehydrogenase. Atovaquone (Kic = 60 nM) was also acompetitive inhibitor of the rat enzyme. Dichloroally]-lawsone was found to be a time-dependent inhibitor of the rat enzyme, with the lowest inhibition constant (Ki* = 0.77 nM) determined so far for mammalian dihydroorotate dehydrogenases. Another inhibitor, brequinar was previously reported to be a slow-binding inhibitor of the human dihydroorotate dehydrogenase [W. Knecht, M. Loffler, Species-related inhibition of human and rat dihyroorotate dehydrogenase by immunosuppressive isoxazol and cinchoninic acid derivatives, Biochem. Pharmacol. 56 (1998) 1259-1264]. The slow binding features of this potent inhibitor (Ki* = 1.8 nM) with the human enzyme, were verified and seen to be one of the reasons for the narrow therapeutic window (efficacy versus toxicity) reported from clinical trials on its antiproliferative and immunosuppressive action. With respect to the substrate dihydroorotate, atovaquone was an uncompetitive inhibitor of human dihydroorotate dehydrogenase (Kiu = 11.6 microM) and a non-competitive inhibitor of the rat enzyme (Kiu = 905/ Kic = 1,012 nM). 1.5 mM polyporic acid, a natural quinone from fungi, influenced the activity of the human enzyme only slightly; the activity of the rat enzyme was decreased by 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号