共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
T-box antitermination is one of the main mechanisms of regulation of genes involved in amino acid metabolism in Gram-positive bacteria. T-box regulatory sites consist of conserved sequence and RNA secondary structure elements. Using a set of known T-box sites, we constructed the common pattern and used it to scan available bacterial genomes. New T-boxes were found in various Gram-positive bacteria, some Gram-negative bacteria (delta-proteobacteria), and some other bacterial groups (Deinococcales/Thermales, Chloroflexi, Dictyoglomi). The majority of T-box-regulated genes encode aminoacyl-tRNA synthetases. Two other groups of T-box-regulated genes are amino acid biosynthetic genes and transporters, as well as genes with unknown function. Analysis of candidate T-box sites resulted in new functional annotations. We assigned the amino acid specificity to a large number of candidate amino acid transporters and a possible function to amino acid biosynthesis genes. We then studied the evolution of the T-boxes. Analysis of the constructed phylogenetic trees demonstrated that in addition to the normal evolution consistent with the evolution of regulated genes, T-boxes may be duplicated, transferred to other genes, and change specificity. We observed several cases of recent T-box regulon expansion following the loss of a previously existing regulatory system, in particular, arginine regulon in Clostridium difficile and methionine regulon in Lactobacillaceae. Finally, we described a new structural class of T-boxes containing duplicated terminator-antiterminator elements and unusual reduced T-boxes regulating initiation of translation in the Actinobacteria. 相似文献
9.
T-box genes are defined by the presence of a conserved sequence, the so-called T-box; this codes for the T-domain, which is involved in DNA-binding and protein dimerisation. Members of this gene family have been found in all metazoans, from diploblasts to humans, and mutations in T-box gene family members in humans have been linked to several congenital disorders. Sequencing of the complete genomes of a range of invertebrate and vertebrate species has allowed the classification of individual T-box genes into five subfamilies: Brachyury, T-brain1, Tbx1, Tbx2 and Tbx6. This review will largely focus on T-box genes identified in organisms whose genomes have been fully sequenced, emphasising how comparative studies of the T-box gene family will help to reveal the roles of these genes during development and in the adult. 相似文献
10.
11.
12.
13.
The British Society for Developmental Biology (BSDB) autumn meeting on ‘T-box Genes in Development and Disease’ was held in Nottingham, UK, from 16 to 18 September 2002. 相似文献
14.
15.
16.
17.
Tadayoshi Hayata Akira Eisaki Hiroki Kuroda M. Asashima 《Development genes and evolution》1999,209(9):560-563
The Xenopus Brachyury-like Xbra3 gene is a novel T-box gene that is closely associated with Xenopus Brachyury. The expression pattern of Xbra3 during development is similar to that of Xbra. During gastrulation Xbra3 is expressed in the marginal zone, with a gradient of increasing expression from ventral to dorsal. In the early neurula stage Xbra3 is expressed in the notochord and posterior mesoderm, but by the tailbud stage its expression is restricted to the forming tailbud and the posterior portion of the notochord. 相似文献
18.
19.
20.
T-targets: clues to understanding the functions of T-box proteins 总被引:10,自引:0,他引:10