首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The base analogue 2-aminoadenine (2,6-diaminopurine, D) has been introduced at selected positions into synthetic oligodeoxyribonucleotides and DNA by the combined use of chemical and enzymatic methods. 2-aminoadenine substitution for adenine introduces changes in the minor groove of DNA and creates an additional hydrogen bond in the Watson-Crick base pair with thymine. Oligonucleotide hybridization probes containing 2-aminoadenine showed increased selectivity and hybridization strength during DNA-DNA hybridization to phage or genomic target DNA. Properties of the base analogue with respect to DNA modifying enzymes were examined. 2-aminoadenine was used to probe minor groove determinants during the treatment of DNA by 12 restriction endonucleases. Inhibition of cleavage was found for several restriction enzymes.  相似文献   

2.
A specific and efficient method is presented for the conversion of 2′-deoxyuridine to thymidine via formation and reduction of the intermediate 5-hydroxymethyl derivative. The method has been used to generate both thymidine and 5-methyl-2′-deoxycytidine containing the stable isotopes 2H, 13C and 15N. Oligodeoxyribonucleotides have been constructed with these mass-tagged bases to investigate sequence-selectivity in hydroxyl radical reactions of pyrimidine methyl groups monitored by mass spectrometry. Studying the reactivity of 5-methylcytosine (5mC) is difficult as the reaction products can deaminate to the corresponding thymine derivatives, making the origin of the reaction products ambiguous. The method reported here can distinguish products derived from 5mC and thymine as well as investigate differences in reactivity for either base in different sequence contexts. The efficiency of formation of 5-hydroxymethyluracil from thymine is observed to be similar in magnitude in two different sequence contexts and when present in a mispair with guanine. The oxidation of 5mC proceeds slightly more efficiently than that of thymine and generates both 5-hydroxymethylcytosine and 5-formylcytosine but not the deaminated products. Thymine glycol is generated by both thymine and 5mC, although with reduced efficiency for 5mC. The method presented here should be widely applicable, enabling the examination of the reactivity of selected bases in DNA.  相似文献   

3.
Determination of the nature of the antigen-antibody complex has always been the ultimate goal of three-dimensional epitope mapping studies. Various strategies for epitope mapping have been employed which include comparative binding studies with peptide fragments of antigens, binding studies with evolutionarily related proteins, chemical modifications of epitopes, and protection of epitopes from chemical modification or proteolysis by antibody shielding. In this study we report the use of protein engineering to modify residues in horse cytochrome c that are in or near the epitopes of four monoclonal antibodies specific for this protein. The results demonstrate not only that site-specific changes in the antigen binding site dramatically affect antibody binding, but, more importantly, that some of the site-specific changes cause local and long-range perturbations in structure that are detected by monoclonal antibody binding at other surfaces of the antigen. These findings emphasize the role of native conformation in the stabilization of the interaction between protein antigens and high affinity monoclonal antibodies. Furthermore, the results demonstrate that monoclonal antibodies are more sensitive probes of changes in conformation brought about by protein engineering than low resolution spectroscopic methods such as circular dichroism, where similar spectra are observed for all the analogues. These findings suggest a role for monoclonal antibodies in detecting conformational changes invoked by nonconservative amino acid substitutions or substitutions of evolutionarily conserved residues in protein-engineered or recombinant proteins.  相似文献   

4.
C Zimmer  H Triebel 《Biopolymers》1969,8(5):573-593
Reversible and irreversible conformational changes in the acid-induced denaturation of DNA were studied by spectrophotometric titration, sedimentation, and melting measurements. A GC-rich DNA (72 mole-%) shows complete or partial reversibility of the titration profiles within the pH region of transition from helix to coil, while AT-rich DNA (29 mole-%) is irreversible in its titration behavior at each acid pH below the onset of the transition. The results for GC-rich DNA further indicate distinct differences in the titration behavior, which can be attributed to differences in the frequency of GC clusters along the DNA molecule. Plots of the sedimentation coefficient and the parameter asapp against pH lead to the conclusion that conformational changes occur before the onset of the acid-induced helix–coil transition. These alterations are more pronounced upon protonation of larger GC-rich domains than of smaller ones, as concluded from very marked differences observed in the sedimentation–pH behavior of two GC-rich DNA's. An acid denaturation scheme for a GC-rich DNA segment is suggested. Reversibility of the acid denaturation is explained by the existence of stable, protonated, single GC base pairs in nonprotonated stacked single-stranded domains formed in the acid-induced transition region.  相似文献   

5.
Oligonucleotide dendrimers were synthesized using a novel phosphoramidite synthon, tris-2,2,2-[3-(4,4'-dimethoxytrityloxy) propyloxymethyl]ethyl- N , N -diisopropylaminocyanethoxy phosphoramidite. Label, incorporated using [gamma-32P]ATP and polynucleotide kinase, was increased in proportion to the number of 5'-ends. There was a similar increase in signal when these multiply labelled oligonucleotides were used as probes to oligonucleotide arrays. A dendrimeric oligonucleotide was used successfully as a primer in the PCR. The strand bearing the dendrimer was resistant to degradation by T7 Gene 6 exonuclease making it easy to convert the double-stranded product of the PCR to a multiply-labelled, single-stranded probe.  相似文献   

6.
Crystal structures of Sr(2+), Ni(2+) and Cu(2+) of human insulin complexes have been determined. The structures of Sr(2+) and Ni(2+) complexes are similar to Zn(2+) insulin and are in T6 conformation. (All the six monomers in the insulin hexamer are in Tensed conformation (T), which means the first eight residues of B-chain are in an extended conformation). Cu(2+) complex, though it assumes T6 conformation, has more structural differences due to lowering of crystal symmetry and space group shift from H3 (Hexagonal crystal system) to P3 (Trigonal crystal system) and a doubling of the c axis. 2Ni(2+) human insulin when compared to 4Ni(2+) Arg insulin suggests that terminal modifications may be responsible for additional metal binding. All the three metals have been shown to have a role in diabetes and hence may be therapeutically useful.  相似文献   

7.
The capacity of the modification methylase (MHhaI) and restriction endonuclease (HhaI) form Haemophilus haemolyticus to methylate and cleave, respectively, recognition sites which are in right-handed B or left-handed Z structures was determined in vitro. Plasmids containing tracts of (dC-dG) as well as numerous individual d(GCGC) sites distributed around the vector were studied. Negative supercoiling was used to convert the (dC-dG) tracts (approximately 30 bp in length) from a right-handed to a left-handed conformation. (Methyl-3H)-SAM was used to localize and quantitate modified d(GCGC) recognition sites, whereas cleavage by HhaI was used to detect unmethylated sites. In the left-handed Z-form, the (dC-dG) blocks were not methylated by MHhaI and not cleaved by HhaI. A two-dimensional gel analysis of a family of 33 topoisomers treated with MHhaI revealed that the lack of methylation in the (dC-dG) blocks was directly correlated to the supercoil-induced B to Z transition in these segments. These results are significant with respect to enzyme-DNA interactions in general and provide the basis for using HhaI and MHhaI as probes for different DNA structures and conformational transitions under physiological conditions.  相似文献   

8.
In the present study, the molecular dynamics simulation technique is employed to investigate the hydrogen abstraction possibility from sugar of DNA in two designed complexes of copper-based chemical nuclease [Cu(BPA)](2+) bis(2-pyridylmethyl) amine (BPA) or [Cu(IDB)](2+) N,N-bis(2-benzimidazolylmethyl) amine (IDB) bound to the zinc finger protein Tramtrack (TTK). The simulated results show that each of the designed complexes can form a stable conformation within 30 ns of simulation time with the substrate OOH(-) and an 18-base pair (bp) DNA segment and is located in the major groove of the DNA segment. The active terminal O atom of the OOH(-) substrate is found in close proximity to the target C2'H, C3'H, C4'H or C5'H proton of the DNA in TTK + [Cu(BPA)OOH](+) + DNA or TTK + [Cu(IDB)OOH](+) + DNA complex, which is crucial to propose the hydrogen abstraction possibility that is responsible for the DNA cleavage. The positions of copper-based chemical nucleases bound to TTK may substantially influence the hydrogen abstraction possibility. The structures and sizes of ligands in copper-based nucleases are also found to have influence on the order of difficulty of the hydrogen abstraction from the sugars of DNA.  相似文献   

9.
In view of the fluorescent switching properties and anti-fatigue properties of diarylethene, a diarylethene fluorescent chemosensor for the immediate detection of zinc ion (Zn2+) and magnesium ion (Mg2+) in acetonitrile was synthesized in this article. The structure of 1o was determined by performing spectroscopy and elemental analysis. The presence of Zn2+ or Mg2+ made the chemosensor 1o show an obvious “turn-on” fluorescent signal (bright yellow-green for Mg2+ and bright cyan for Zn2+). The fluorescent change caused by the 1:1 binding of 1o and Zn2+ or Mg2+ might be due to hindering the excited-state intramolecular proton transfer (ESIPT) process, which were bolstered by Benesi–Hildebrand analysis, Job's plot curves, proton nuclear magnetic resonance (1H-NMR) titration and mass spectrometry. The limits of detection were acquired from the standard curve plots for Mg2+ at 44.6 nM and for Zn2+ at 14 nM. Based on the fluorescent behaviors, a logic gate was constructed with the emission intensity at 528/518 nm as output signal, the ultraviolet-visible (UV-vis) lights, Mg2+/Zn2+ and EDTA as input signals. Exogenous Zn2+ and Mg2+ fluorescent bioimaging were performed on Hela cells with 1o , indicating its potential application in biodiagnostic analysis. In particular, 1o was manufactured into test paper, and Zn2+ or Mg2+ can be conveniently, efficiently and qualitatively identified by the fluorescent color variation of the test strips.  相似文献   

10.
In this study 1H NMR has been used to investigate the conformational state of DNA in nucleosome core particles. The nucleosome core particles exhibit partially resolved low field (10-15 ppm) spectra due to imino protons in Watson-Crick base pairs (one resonance per GC or AT base pair). To a first approximation, the spectrum is virtually identical with that of protein-free 140 base pair DNA, and from this observation we draw two important conclusions: (i) Since the low field spectra of DNA are known to be sensitive to conformation, the conformation of DNA in the core particles is essentially the same as that of free DNA (presumably B-form), (ii) since kinks occurring at a frequency at 1 in 10 or 1 in 20 base pairs would result in a core particle spectrum different from that of free DNA we find no NMR evidence supporting either the Crick-Klug or the Sobell models for kinking DNA around the core histones. Linewidth considerations indicate that the rotational correlation time for the core particles is approximately 1.5 X 10(-7) sec, whereas the end-over-end tumbling time of the free 140 base pair DNA is 3 X 10(-7) sec.  相似文献   

11.
Measurement of the volume change by a rapid density method upon sequential addition of calcium ion to calmodulin showed relatively large, nonuniform increases for the first 4 moles Ca2+ per mole calmodulin. Substantially larger volume increases (approximately 15 ml/mol protein) were observed upon addition of the second and fourth moles Ca2+ relative to the first and third moles added per mole calmodulin. A total volume increase of approximately 170 ml/mol protein attended the addition of 4 moles Ca2+, as expected for multidentate carboxylate coordination to metal ion. Marginal changes in volume were observed upon further additions, the data showing a remarkably sharp transition after [Ca2+]/[calmodulin] = 4. The results are consistent with an ordered binding of Ca2+ in which pair-wise additions produce similar volume changes; the volume change behavior, however, does not indicate an absence of distinct conformational states for a Ca2+(1)-calmodulin and a Ca2+(3)-calmodulin complex as has been proposed on the basis of 1H-NMR evidences.  相似文献   

12.
NMR studies of conformational states and dynamics of DNA   总被引:3,自引:0,他引:3  
The application of high resolution NMR techniques to the investigation of DNA double helices in solution is currently in a rapid state of change as a result of advances in three different fields. First, new methods (cloning, enzymatic degradation, sonication, and chemical synthesis) have been developed for producing large quantities of short DNA suitable for NMR studies. Second, there have been major advances in the field of NMR in terms of the introduction of new pulse techniques and improvements in instrumentation. Finally, as a result of recent X-ray diffraction studies on short DNA helices and the discovery of left-handed Z-DNA there is heightened interest in the study of DNA structures in solution and the effect of sequence on structure. In the present review, we discuss the way in which NMR techniques have been used to probe various aspects of the DNA properties, including base pairing structure, dynamics of breathing, effect of sequence on DNA structure, internal molecular motions, the effect of environment on the DNA, and the interaction of DNA with small ligands.  相似文献   

13.
The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure.  相似文献   

14.
We have shown previously the intercalation geometry of a series of acenaphtho [1,2-b] pyrrole derivatives with DNA double helix in vitro. In this report we chose a couple of intercalating analogues and a Chinese traditional medicine Tanshinone IIA as probes to investigate the response of DNA damage sensor ataxia-telangiectasia mutated (ATM) protein toward the DNA topological change in vivo. The two analogues (1)a (3-(4-Methyl-piperazin)-8-oxo-8H-acenaphtho [1,2-b]pyrrole -9-carbonitrile) and (3)a (3-(3-Dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9- carbonitrile) could unwind double helix to different extents, whereas Tanshinone IIA could wind the double helix. Using a combination of circular dichroism (CD) studies and immunoflurescence assays, we found for the first time that the ATM protein kinase can respond to the unwinding chromatin conformational damage caused by (1)a and (3)a, while it could not be activated by the winding effects caused by Tanshinone IIA. Moreover, the amount of ATM protein phosphorylation is consistent with the degree of unwinding conformational damage. The average number of ATM foci in an MCF-7 cell is 32 +/- 1.5 at 6 microM (1)a, which is significantly higher than the 8 microM (3)a exposure (15 +/- 0.5, p < 0.5). A new couple of DNA topological probes, (1)a and (3)a have been found for the future semi-quantitative investigation of factors involved in the DNA damage pathway.  相似文献   

15.
The speciation study of the Zn(2+)/glutathione (GSH, H(3)G) and Zn(2+)/N-acetylcysteinylglycine (NAcCG, H(2)L) was performed in aqueous solution by means of potentiometry and ESI mass spectrometry. The ligand N-acetylcysteinylglycine was synthesized by protection/activation strategies. (1)H NMR data for the Zn(2+)/NAcCG system at different pH were also collected, to gain insight in the coordination modes for the ligand. The information collected for the NAcCG model ligand were used to propose the structure in solution for the Zn(2+)/GSH complexes. Dinuclear complexes of GSH with Zn(2+), which have never been proposed previously in the literature, were identified in solution and a model of their structure was proposed. Moreover, the Zn(2+) promoted deprotonation of the cysteinyl peptidic NH with formation of five membered (S,N(Cys)(-)) chelating rings was evidenced. The speciation study of the ternary Zn(2+)/GSH/NAcCG system was also performed, showing that the Zn(2+) does not bind preferentially to GSH in presence of NAcCG. The (1)H NMR protonation studies of both GSH and NAcCG were also performed, and a novel proton dissociation microconstant calculation procedure has been proposed and applied to GSH equilibria.  相似文献   

16.
Many enzymes occurring in nature like superoxide dismutase are systems rather too big to be accessible for vibrational and quantum chemical investigations. Thus, enzyme-mimetic model compounds consisting of a biological active metal centre surrounded by a macrocyclic ligand are used to shed light on binding properties of the active metal centre. Far- and mid-range IR spectroscopic investigations and a conformational analysis with the semi-empirical ZINDO/1 method of superoxide dismutase-mimetic complex Cu[TAAB]2+ are performed (TAAB = [b,f,j,n][1,5,9,13]tetra-aza-cyclohexadecine (tetra-anhydroamino benzaldehyde)). A distorted tetrahedral copper(II) centre with slightly twisted phenyl subunits is determined as the most stable conformation. Calculated mid- and far-IR spectra are in good agreement with the experimental data and confirm the proposed structure. A harmonic normal-coordinate analysis is used to assign the vibrational modes of the observed spectra.  相似文献   

17.
Biotinylphallotoxins: preparation and use as actin probes   总被引:1,自引:0,他引:1  
We describe the synthesis of four phalloidin derivatives conjugated with biotin. An aminomethyldithiolane derivative of ketophalloidin was used as a reactive starter compound, and biotin residues were coupled to this molecule either directly, separated by spacer chains comprised of one or two glycyl residues, or of a 12-atom long chain constructed from succinic acid and hexamethylendiamine. Although all products still displayed a high affinity for F-actin, as seen in competition experiments with [3H]-demethylphalloidin, only the one with the longest spacer (BHPP) showed specific and high-affinity decoration of actin filaments in permeabilized cells, in conjunction with FITC-coupled avidin and fluorescence microscopy. Combined with gold-streptavidin, BHPP decorated the actin filament system at the light and electron microscopic level faithfully and with satisfactory density. Actin filaments polymerized in vitro from purified protein were not as densely labeled as had been expected. However, in all these experiments the new phalloidin probe, when combined with avidin or streptavidin, yielded clear and highly specific labeling of F-actin. Therefore, this system is useful to identify and localize actin unambiguously in microfilaments, independent of actin antibodies, and should facilitate double-label experiments on cytoskeletal components at the ultrastructural level.  相似文献   

18.
CMP-Kdn synthetase catalyses the reaction of sialic acids (Sia) and CTP to the corresponding activated sugar nucleotide CMP-Sia and pyrophosphate PP i . Saturation Transfer Difference (STD) NMR spectroscopy has been employed to investigate the sub-structural requirements of the enzyme’s binding domain. Sialylnucleoside mimetics, where the sialic acid moiety has been replaced by a carboxyl group and a hydrophobic moiety, have been used in NMR experiments, to probe the tolerance of the CMP-Kdn synthetase to such replacements. From our data it would appear that unlike another sialylnucleotide-recognising protein, the CMP-Neu5Ac transport protein, either a phosphate group or other functional groups on the sialic acid framework may play important roles in recognition by the synthetase. Dedicated to the memory of Professor Dr Yasuo Inoue  相似文献   

19.
Interactions between transmembrane and cytoplasmic domains of Ca2+-ATPase from sarcoplasmic reticulum (SR) have been studied. To affect the hydrophobic transmembrane domain, we used four amphiphilic steroids - esters of a dibasic acid and 20-oxypregnene. All four steroids contained cholesterol-like nuclei and differed by the structure of side chains. Steroids with carboxyl groups in the side chains inhibited the rates of ATP hydrolysis and Ca2+ transport, whereas a steroid without the carboxyl group did not appreciably affect Ca2+-ATPase function. Fluorimetric titration of FITC-labelled Ca2+-ATPase in SR vesicles by Nd3+ showed that steroids increased the apparent dissociation constant for Nd3+ bound to the hydrolytic site, the potency order of the steroids being the same as for the sterol-induced inhibition of the hydrolytic activity of Ca2+-ATPase. These results suggest structural changes in the active site. Ca2+ transport was inhibited more efficiently by steroids than the hydrolytic activity of the enzyme. This could be partially due to the increase of the membrane passive permeability induced by steroids, which, in turn, reflected the efficiency of the interaction of the steroids with lipid bilayers. The effects of the steroids were largely dependent on their amphiphilicity (the availability of polar groups in regions A and D), the structure of the side chains, and, possibly, on the distance between the molecular polar groups. We suggest that the inhibition of hydrolytic and transport functions of Ca2+-ATPase in the SR membrane is due to the interaction of the steroids with the transmembrane alpha-helical segments.  相似文献   

20.
DNA glycosylases are key enzymes participating in the process of DNA repair, which maintains the integrity of the cellular genome. Currently, structures for many of these enzymes have been solved. This review is devoted to the analysis of these structures and the dynamics of the interactions of DNA glycosylases with DNA. The available data suggest that lesion recognition by DNA glycosylases is a highly dynamic process accompanied with multiple conformational changes in the enzyme and the DNA substrate molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号