首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NMR studies of chromomycin A3 interaction with DNA   总被引:3,自引:0,他引:3  
E Berman  S C Brown  T L James  R H Shafer 《Biochemistry》1985,24(24):6887-6893
The binding of chromomycin A3 to calf thymus DNA and poly(dG-dC) has been studied by 13C and 1H NMR with emphasis on the mode of binding, the role of Mg2+, and pH effects. The most prominent changes in the DNA base pair 13C NMR resonances upon complexation with chromomycin were observed for G and C bases, consistent with the G-C preference exhibited by this compound. Comparison of the 13C spectrum of DNA-bound chromomycin A3 with that of DNA-bound actinomycin D, a known intercalator, showed many similarities in the base pair resonances. This suggested the possibility that chromomycin A3 binds via an intercalative mechanism. 1H NMR studies in the imino proton, low-field region of the spectrum provided additional evidence in support of this binding mode. In the low-field spectrum of chromomycin A3 bound to calf thymus DNA, a small shoulder was observed on the upfield side of the G-C imino proton peak. Similarly, in the chromomycin A3 complex with poly(dG-dC), a well-resolved peak was found upfield from the G-C imino proton peak. These results are expected for ligands that bind by intercalation. Furthermore, in both the calf thymus and poly(dG-dC) drug complexes (in the presence of Mg2+) a broad peak was also present downfield (approximately 16 ppm from TSP) from the DNA imino protons. This was attributed to the C-9 phenolic hydroxyl proton on the chromomycin chromophore. Visible absorbance spectra at different pH values showed that the role of Mg2+ in the binding of chromomycin A3 to DNA is more than simple neutralization of the drug's anionic change.  相似文献   

2.
Imino proton and 31P NMR studies were conducted on the binding of actinomycin D (ActD) to self-complementary oligodeoxyribonucleotides with one GC binding site [d(ATATGCATAT) (1), d-(ATACGCGTAT) (2), and d(ATATACGCGTATAT) (3)] and with two GC sites [d(ATGCATGCAT) (4)]. At R = 1 (molar ratio of ActD to oligomer duplex) ActD caused a doubling of the number of imino proton signals at, and adjacent to, the GC binding site of 1. One of the G.C base pair signals shifted upfield while the other shifted downfield. Both of the signals for the A.T base pairs adjacent to the binding site shifted downfield. All imino proton signals of 2 and the longer sequence, 3, shifted upfield on binding of ActD to the GC site, indicating a sequence-dependent change in base stacking on complex formation. For both 1 and 2 addition of ActD resulted in a similar pattern of three downfield 31P NMR signals. The two most downfield signals have chemical shift and temperature dependence which are characteristic of phosphate groups at isolated intercalation sites. At R = 1 the ActD complex with 4 has very complex spectra with both upfield and downfield A.T and G.C imino signals. All these data were consistent with two 1:1 complexes with the unsymmetrical phenoxazone ring adopting both of the two possible orientations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
At low temperature and low salt concentration, both imino proton and 31p-nmr spectra of DNA complexes with the intercalators ethidium and propidium are in the slow-exchange region. Increasing temperature and/or increasing salt concentration results in an increase in the site exchange rate. Ring-current effects from the intercalated phenanthridinium ring of ethidium and propidium cause upfield shifts of the imino protons of A · T and G · C base pairs, which are quite similar for the two intercalators. The limiting induced chemical shifts for propidium and ethidium at saturation of DNA binding sites are approximately 0.9 ppm for A · T and 1.1 ppm for G · C base pairs. The similarity of the shifts for ethidium and propidium, in both the slow- and fast-exchange regions over the entire titration of DNA, shows that a binding model for propidium with neighbor-exclusion binding and negative ligand cooperativity is correct. The fact that a unique chemical shift is obtained for imino protons at intercalated sites over the entire titration and that no unshifted imino proton peaks remain at saturation binding of ethidium and propidium supports a neighbor-exclusion binding model with intercalators bound at alternating sites rather than in clusters on the double helix. Addition of ethidium and propidium to DNA results in downfield shifts in 31P-nmr spectra. At saturation ratios of intercalator to DNA base pairs in the titration, a downfield shoulder (approximately ?2.7 ppm) is apparent, which accounts for approximately 15% of the spectral area. The main peak is at ?3.9 to ?4.0 ppm relative to ?4.35 in uncomplexed DNA. The simplest neighbor-binding model predicts a downfield peak with approximately 50% of the spectral area and an upfield peak, near the chemical shift for uncomplexed DNA, with 50% of the area. This is definitely not the case with these intercalators. The observed chemical shifts and areas for the DNA complexes can be explained by models, for example, that involve spreading the intercalation-induced unwinding of the double helix over several base pairs and/or a DNA sequence- and conformation-dependent heterogeneity in intercalation-induced chemical shifts and resulting exchange rates.  相似文献   

4.
Interactions of meso-tetra(4-N-methylpyridyl)porphyrin [TMpyP(4)], meso-tetra(2-N-methylpyridyl)porphyrin [TMpyP(2)], and meso-tetra(para-N-trimethylanilinium)porphyrin (TMAP) with several native and synthetic DNAs were studied by a variety of physical techniques: nmr (31P and 1H), absorption spectroscopy, viscosity, and flow dichroism (FD). Of the three porphyrins studied, only the interaction of TMpyP(4) with poly [d(G-C)2] was fully consistent with intercalation. In particular, a large increase in viscosity, a downfield 31P-nmr signal (ca. -1 ppm), and upfield imino proton signals (11 to 12 ppm range) were observed. Comparison of the effects of TMpyP(4) on DNAs of different GC contents revealed larger changes in solution viscosity with increased GC content. However, the characteristic changes in 31P- and 1H-nmr spectra were not observed. The viscosity increases observed in studies with poly[d(A-C)(G-T)] and C. Perf. DNA were much lower than with poly[d(G-C)2], M. Lys. DNA, and calf thymus DNA. Thus, GC sequence and content are clearly important. The principal change in the 31P-nmr signal of native DNA is the appearance of a very broad shoulder centered at ca. -2.0 ppm, which is larger in M. Lys. DNA than in C. Perf. DNA. FD studies indicate highly ordered TMpyP(4) cations arranged perpendicular to the DNA axis of calf thymus DNA. Together, these results suggest the major effects of TMpyP(4) on DNA properties are due to strong GC-binding interactions that influence DNA structure. The data are consistent with combined intercalative and outside binding interactions of TMpyP(4) with GC regions of DNA. In contrast, similar studies with TMAP suggest that it influences AT regions of DNA by an outside binding mode. On the other hand, TMpyP(2) effects on DNA properties are consistent with nonselective outside binding.  相似文献   

5.
Novel 1H nuclear magnetic resonance (NMR) resonances, arising from exchangeable protons and centered at approximately 11.2 and 10.1 parts per million (ppm), have been observed in the low-field spectrum (10-15 ppm) of the chicken erythrocyte core particle [145 +/- 2 base pairs (bp)]. These peaks are located upfield from the normal adenine-thymine (A-T) and guanine-cytosine (G-C) imino peaks characteristic of B-form deoxyribonucleic acid (DNA) and are not observed in free DNA under identical conditions. The appearance of the new peaks is ionic strength dependent and temperature-reversible below 75 degrees C. At 25 degrees C, the upfield peak area represents 5% of the DNA base pairs (7 bp), while between 45 and 55 degrees C, the area increases to 18%, affecting approximately 25 bp. Area increases in the upfield resonances result in a complementary decrease in the A-T and G-C imino peaks found between 12 and 14 ppm. We believe these novel proton signals represent a histone-induced DNA conformational change which involves localized alteration of base pairing in the core particle.  相似文献   

6.
The 1H-NMR spectra of eight unsaturated disaccharides obtained by bacterial eliminase digestion of chondroitin sulfate and of heparan sulfate/heparin were recorded in order to construct an NMR data base of sulfated oligosaccharides and to investigate the effects of sulfation on the proton chemical shifts. These shifts were assigned by two-dimensional HOHAHA (homonuclear Hartmann-Hahn) and COSY (correlation spectroscopy) methods. The results indicated the following. (1) Two sets of proton signals were observed, corresponding to the alpha and beta anomers of these disaccharides, except those containing N-sulfated GlcN (2-deoxy-2-amino-D-glucose), in which only one set of signals appeared, corresponding to the alpha anomer. (2) Signals of protons bound to an O-sulfated carbon atom and those bound to the immediately neighboring carbon atoms were shifted downfield by 0.4-0.7 and 0.07-0.3 ppm, respectively. (3) For the disaccharides containing the N-sulfated GlcN, the signals of the protons bound to C-2 and C-3 were shifted upfield by 0.6 and 0.15 ppm, respectively, but that of C-1 was shifted downfield by 0.25 ppm when compared with those of the corresponding N-acetylated disaccharides. (4) For the chondroitin sulfate disaccharides sulfated on the C-4 position of GalNAc (2-deoxy-2-N-acetylamino-D-galactose) or the C-2 position of delta GlcA (D-gluco-4-ene-pyranosyluronic acid), the signal of the H-3 proton of delta GlcA or the H-4 proton of GalNAc was shifted upfield by 0.1-0.15 ppm, indicating the steric interaction of the two sugar components. (5) These effects of sulfation on chemical shifts are additive.  相似文献   

7.
The first high resolution proton nuclear magnetic resonance spectra are reported for the native ferric and ferric cyano complexes of bovine lactoperoxidase. The spectrum of the native species exhibits broad heme signals in a far downfield region characteristic of the high-spin ferric state. The low-spin cyano complex yields a proton nuclear magnetic resonance spectrum with signals as far as 68.5 ppm downfield and as far as -28 ppm upfield of the tetramethylsilane reference. These peak positions are anomalous with respect to those seen only as far as 35 ppm downfield in other cyano hemoprotein complexes. An extreme asymmetry in the unpaired spin delocalization pattern of the iron porphyrin is suggested. The unusual proton nuclear magnetic resonance properties parallel distinctive optical spectral properties and the exceptional resistance to heme displacement from the enzyme. Lactoperoxidase utilized in these studies was isolated from raw milk and purified by an improved, rapid chromatographic procedure.  相似文献   

8.
The 19F NMR spectra of the oxidized and reduced forms of 8-fluororiboflavin, 8-fluoro-FAD, and the 8-fluoroflavin-reconstituted flavoproteins flavodoxin, riboflavin binding protein, D-amino acid oxidase, p-hydroxybenzoate hydroxylase, Old Yellow Enzyme, anthranilate hydroxylase, general acyl-CoA dehydrogenase, glucose oxidase, and L-lactate oxidase were measured. For the proteins studied the oxidized resonances appeared over a 10.1-ppm range, while the reduced resonances were spread over 10.3 ppm. Reduction caused an upfield shift of about 27 ppm for the free 8-fluoroflavins and most of the 8-fluoro flavoproteins. The notable exception was 8-fluoro-FMN flavodoxin, which was shifted 37.6 ppm, indicating an unusually high electron density in the benzene ring. Ligand binding to the oxidized 8-fluoro flavoproteins caused either upfield or downfield shifts of 1.5-5 ppm, depending on the protein/ligand combination. The 8-fluoro-FAD anthranilate hydroxylase resonance was shifted downfield and split into two peaks in the presence of anthranilate. The 8-fluoro-FMN Old Yellow Enzyme resonance was shifted upfield upon complexation with charge-transfer-forming, para-substituted phenolates. The upfield shift increased from less than 1 to 5 ppm as the electron-donating capacity of the phenolate increased. Complexation of native Old Yellow Enzyme with 2,4-difluorophenol caused the fluorine resonances of the ligand to shift and split into two pairs of signals. Each pair of signals was associated with a different isozyme of Old Yellow Enzyme.  相似文献   

9.
S Roy  A G Redfield 《Biochemistry》1983,22(6):1386-1390
Yeast tRNAPhe has been studied by using proton NMR and nuclear Overhauser effect (NOE) with deuterium substitution. Direct NOE evidence is presented for assignment of imino resonances of 23 of 27 base pairs in this tRNA. Other indirect evidence is presented for tentative assignment of four other base pairs. Almost total assignment also has been made of the important noninternally bonded imino protons and tertiary interactions (however, G18-psi 55 remains unassigned). The most surprising result has been identification of GC11 at -13.68 ppm; this is the first time a GC base pair has been identified so far downfield. This peak (GC11) is also identified as the resonance of the unique imino proton that exchanges in a time of more than 1 day, as previously described. These identifications of imino proton resonances made it possible to reinterpret the proton solvent exchange rate data previously published on this tRNA and understand them better. The assignments of resonances should pave the way for more detailed solution study of this tRNA and its interaction with biologically relevant molecules.  相似文献   

10.
High resolution NMR study of CAP binding site 22mer in H2O solution   总被引:1,自引:0,他引:1  
High resolution proton NMR were measured for the deoxyoligonucleotide 22mer duplex corresponding to the CAP (catabolite gene activator protein) binding site of lac promotor. The spectra in the lower field region than the water resonance were taken with the time-shared Redfield pulse method by using a JEOL 500 MHz NMR spectrometer. In the imino proton region 18 peaks were separately observed, but the area intensity at 10 degrees C corresponds to 20 protons. By selective irradiation at each peak position NOEs (nuclear Overhauser effects) were observed between the imino and adenine C2H protons and between imino proton themselves. By tracing sequential NOE train carefully, 17 imino proton signals could be unambiguously assigned to each base pair except five AT base pairs at terminals. With the elevation of temperature the peaks showed gradual broadening and disappeared, which indicates the stepwise base pair opening of the duplex. Referring to the above peak assignments it can be concluded that GC20 and AT4 pairs close to terminals relax first and the base pair opening proceeds toward central GC13 and 14.  相似文献   

11.
X L Gao  D J Patel 《Biochemistry》1988,27(5):1744-1751
We report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets recorded in H2O and D2O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A change in sugar pucker from the C2'-endo range to the C3'-endo range is detected at C2 on formation of the d(ACGT) and d(TCGA) complexes. In addition, the sugar ring protons of C2 exhibit upfield shifts and a large 1 ppm separation between the H2' and H2" protons for both complexes. The L-Ala amide protons undergo large downfield complexation shifts consistent with their participation in intermolecular hydrogen bonds for both tetranucleotide complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The cooked meat mutagen 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) is metabolized in vivo to electrophilic intermediates that covalently bind to DNA guanines. Here we address the mechanism of PhIP's non-covalent interaction with DNA by using spectroscopic and computational methodologies. NMR methodologies indicated that upon addition of DNA, PhIP aromatic protons underwent a small, 0.11-0.12 p.p.m. upfield shift. DNA phosphorus resonances of non-covalent PhIP-DNA complexes broadened and slightly shifted upfield, while DNA base imino proton resonances shifted slightly downfield relative to DNA alone. UV and fluorescence spectra of PhIP titrated with DNA showed no detectable shifting and hypochromism of absorbance or fluorescence bands. In the presence of DNA, PhIP fluorescence was efficiently quenched by acrylamide, but not by silver ion. Further, the NMR spectra suggest that PhIP is in fast exchange with the DNA, and is slightly specific for adenine-thymine (A-T) sequences. Finally, structural arguments based on quantum chemistry calculations suggested that PhIP and its metabolites are unlikely to intercalate into DNA. These data collectively indicate that PhIP non-covalently binds in a groove of DNA.  相似文献   

13.
This paper presents the first 1H-NMR spectra of the aromatic region of adrenodoxin, a mammalian mitochondrial 2Fe-2S non-heme iron ferredoxin. One-dimensional proton NMR spectra of both reduced and oxidized adrenodoxin were recorded as a function of pH. Resonances due to two of the three histidines of adrenodoxin gave sharp signals in the one-dimensional proton NMR spectra. The pKa values of the resolved histidine resonances in the oxidized protein were 6.64 +/- 0.03 and 6.12 +/- 0.06. These values were unchanged when adrenodoxin was reduced by the addition of sodium dithionite. In addition, the oxidized protein showed a broadened histidine C-2H resonance with a pKa value of approx. 7. This resonance was not apparent in the spectra of the reduced protein. The resonances due to the single tyrosine in adrenodoxin were identified using convolution difference spectroscopy. In addition, a two-dimensional Fourier-transform double quantum filtered (proton, proton) chemical shift correlated (DQF-COSY) spectrum of oxidized adrenodoxin was obtained. The cross peaks of the resonances due to the tyrosine, the four phenylalanines, and two of the three histidines of adrenodoxin were resolved in the DQF-COSY spectrum. Reduction of the protein caused several changes in the aromatic region of the NMR spectra. The resonances assigned to the C2 proton of the histidine with a pKa of 6.6 shifted upfield approx. 0.15 ppm. In addition, when the protein was reduced one of the resonances assigned to a phenylalanine residue with a chemical shift of 7.50 ppm appeared to move downfield to 7.82 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
本实验利用核磁共振技术,对体内培养了腹水癌小鼠肝细胞基因组DNA的结构变化进行了测试,发现随致癌时间的延长,基因组DNA内胸腺嘧啶核苷酸周围的化学环境发生了定向的变化,造成DNA核磁共振氢谱中,部分胸腺嘧啶的甲基质子发生了化学位移,在′H-NMR图谱中1.9ppm峰Ⅰ减小,而2.6-2.7ppm区域的峰Ⅱ却明显增加,结果使双峰比(峰Ⅰ积分面积/峰Ⅱ积分面积)显著下降,本文为研究癌症发生和发展的遗传学机制提供了一个新的方法.  相似文献   

15.
本实验利用核磁共振技术,对体内培养了腹水癌小鼠肝细胞基因组DNA的结构变化进行了测试,发现随致癌时间的延长,基因组DNA内胸腺嘧啶核苷酸周围的化学环境发生了定向的变化,造成DNA核磁共振氢谱中,部分胸腺嘧啶的甲基质子发生了化学位移,在′H-NMR图谱中1.9ppm峰Ⅰ减小,而2.6-2.7ppm区域的峰Ⅱ却明显增加,结果使双峰比(峰Ⅰ积分面积/峰Ⅱ积分面积)显著下降,本文为研究癌症发生和发展的遗传学机制提供了一个新的方法.  相似文献   

16.
We report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabaena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously [Skjeldal, L., Westler, W. M., & Markley, J. L. (1990) Arch. Biochem. Biophys. 278, 482-485]. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. This pattern and temperature dependence are distinctly different from those found with reduced plant-type ferredoxins which have signal centered around +120 ppm with Curie-type temperature dependence, assigned to cysteines which interact with Fe(III), and signals centered around +20 ppm with anti-Curie temperature dependence, assigned to cysteines which interact with Fe(II) [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
D G Gorenstein  K Lai 《Biochemistry》1989,28(7):2804-2812
31P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A).poly(U) and calf thymus DNA. 31P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new 31P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A).poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the 31P signals is observed in sonicated poly(A).poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the 31P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA 31P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of 31P chemical shift with drug duplex unwinding angle (Wilson & Jones, 1982) is confirmed for both the RNA and DNA duplexes.  相似文献   

18.
The temperature dependence to the 31P NMR spectra of poly[d(GC)] . poly [d(GC)],d(GC)4, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The 31P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and "Z" helix. The increasing downfield shift with temperature of the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A separate upfield peak (20-60% of the total phosphates) is observed at lower temperatures in the oligo(U) . poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The 31P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation.  相似文献   

19.
J M Pesando 《Biochemistry》1975,14(4):675-681
Nuclear magnetic resonance (nmr) spectra of human carbonic anhydrase B recorded in deuterium oxide reveal seven discrete single proton resonances between 7 and 9 ppm downfield from sodium 2,2-dimethyl-i-silapentane-5-sulfonate. Simplification of spectra by use of Fremy's salt, comparison of peak widths at intersections, and evaluation of the results of inhibition and modification experiments permit determination of the pH dependencies of these resonances. Five of these peaks change position with increasing pH; three move upfield by approximately 95 Hz and two move downfield by 10 and 23 Hz. The first three reflect residues with pK values of 7.23, 6.98, and 6 and can be assigned to the C-2 protons of histidines. The two remaining pH dependent resonances reflect groups with pK values of 8.2 and 8.24. Their line widths and T1 values are comparable to those of the first group, and they also appear to reflect C-H protons of histidines. Despite the structural and functional similarities of the B and C isozymes of human carbonic anhydrase, few of the low field resonances appear to be common to both. Six histidine C-2 protons are observed in the C enzyme and reflect groups with pK values of approximately 7.3, 6.5, 5.7, 6.6, 6.6, and 6.4. A seventh peak contains two protons and moves upfield with increasing pH without titrating. A final resonance to low field moves downfield with increasing pH and reflects a group with a pK between 6 and 7. Its behavior resembles that of peak 1 of the human B enzyme, and it also appears to be a histidine C-H proton. This peak may reflect a conserved residue in the two isozymes that plays an important role in enzymatic function, as discussed in the following paper.  相似文献   

20.
Generation of diastereomeric phosphonate ester adducts of chymotrypsin was evidenced for the first time by 31P NMR and spectrophotometric kinetic measurements. 31P NMR signals were recorded for 4-nitrophenyl 2-propyl methylphosphonate (IMN) at 32.2 ppm and for its hydrolysis product at 26.3 ppm downfield from phosphoric acid. The inhibition of α-chymotrypsin at pH > 8.0 by the faster reacting enantiomer of IMN or 2-propyl methylphosphonochloridate (IMCl), or other phosphonate ester analogs of these compounds, all caused a ~6.0 ppm downfield shift of the 31P signal to the 39–40 ppm region. IMN, when applied below the stoichiometric amount of chymotrypsin, under the same conditions, generated two signals, at 39.0 and at 37.4 ppm. Scans accumulated in hourly intervals showed the decomposition of both diastereomers, with approximate half-lives of 12 h at pH 8.0 and 22°C, into a species with a resonance at 35.5 ppm. The most likely reaction to account for the appearance of this new peak is the enzymic dealkylation of the isopropyl group from the covalently bound phosphonate ester. We base this conclusion mostly on the similarity of the upfield shift to the hydrolysis of phosphonate esters. Contrary to experience with phosphate ester adducts of serine proteases, no signal was detected higher than 25.0 ppm downfield from phosphoric acid for several phosphonate ester adducts of chymotrypsin and in no case did the resonance for the adduct shift further downfield in the course of the experiments. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号