首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Data from the Framingham Heart Study suggest that women may be more sensitive to the deleterious cardiovascular remodeling effects of aldosterone. Previous studies from our laboratory have shown that chronic treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist, decreases ischemic cerebral infarct size and prevents remodeling of the middle cerebral artery (MCA) in male spontaneously hypertensive stroke-prone rats (SHRSP). Therefore, we hypothesized that MR antagonism would reduce ischemic infarct size and prevent MCA remodeling in female SHRSP. Six-week-old female SHRSP were treated for 6 wk with spironolactone (25 or 50 mg.kg(-1).day(-1)) or eplerenone (100 mg.kg(-1).day(-1)) and compared with untreated controls. At 12 wk, cerebral ischemia was induced for 18 h using the intraluminal suture occlusion technique, or the MCA was isolated for analysis of passive structure using a pressurized arteriograph. MR antagonism had no effect on infarct size or passive MCA structure in female SHRSP. To study the potential effects of estrogen, the above experiments were repeated in bilaterally ovariectomized (OVX) female SHRSP treated with spironolactone (25 mg.kg(-1).day(-1)). Infarct size and vessel structure in OVX SHRSP were not different from control SHRSP. Spironolactone had no effect on infarct size in OVX SHRSP. However, MCA lumen and outer diameters were increased in spironolactone-treated OVX SHRSP, suggesting an effect of estrogen. Cerebral artery MR expression, assessed by Western blotting, was increased in female, compared with male, SHRSP. These studies highlight an apparent sexual dimorphism of MR expression and activity in the cerebral vasculature from hypertensive rats.  相似文献   

2.
Hypertension is a major risk factor for stroke, but the factors that contribute to the increased incidence and severity of ischemic stroke in hypertension remain to be determined. 20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to be a potent constrictor of cerebral arteries, and inhibitors of 20-HETE formation reduce infarct size following cerebral ischemia. The present study examined whether elevated production of 20-HETE in the cerebral vasculature could contribute to the larger infarct size previously reported after transient middle cerebral artery occlusion (MCAO) in hypertensive strains of rat [spontaneously hypertensive rat (SHR) and spontaneously hypertensive stroke-prone rat (SHRSP)]. The synthesis of 20-HETE in the cerebral vasculature of SHRSP measured by liquid chromatography-tandem mass spectrometry was about twice that seen in Wistar-Kyoto (WKY) rats. This was associated with the elevated expression of cytochrome P-450 (CYP)4A protein and CYP4A1 and CYP4A8 mRNA. Infarct volume after transient MCAO was greater in SHRSP (36+/-4% of hemisphere volume) than in SHR (19+/-5%) or WKY rats (5+/-2%). This was associated with a significantly greater reduction in regional cerebral blood flow (rCBF) in SHR and SHRSP than in WKY rats during the ischemic period (78% vs. 62%). In WKY rats, rCBF returned to 75% of control following reperfusion. In contrast, SHR and SHRSP exhibited a large (166+/-18% of baseline) and sustained (1 h) postischemic hyperperfusion. Acute blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (HET0016; 1 mg/kg) reduced infarct size by 59% in SHR and 87% in SHRSP. HET0016 had no effect on the fall in rCBF during MCAO but eliminated the hyperemic response. HET0016 also attenuated vascular O2*- formation and restored endothelium-dependent dilation in cerebral arteries of SHRSP. These results indicate the production of 20-HETE is elevated in the cerebral vasculature of SHRSP and contributes to oxidative stress, endothelial dysfunction, and the enhanced sensitivity to ischemic stroke in this hypertensive model.  相似文献   

3.
4.
Matrix metalloproteases (MMPs) are a family of zinc peptidases involved in extracellular matrix turnover. There is evidence that increased MMP activity is involved in remodeling of resistance vessels in chronic hypertension. Thus we hypothesized that inhibition of MMP activity with doxycycline (DOX) would attenuate vascular remodeling. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with DOX (50 mg·kg(-1)·day(-1) in the drinking water) for 6 wk. Untreated SHRSP were controls. Blood pressure was measured by telemetry during the last week. Middle cerebral artery (MCA) and mesenteric resistance artery (MRA) passive structures were assessed by pressure myography. MMP-2 expression in aortas was measured by Western blot. All results are means ± SE. DOX caused a small increase in mean arterial pressure (SHRSP, 154 ± 1; SHRSP + DOX, 159 ± 3 mmHg; P < 0.001). Active MMP-2 expression was reduced in aorta from SHRSP + DOX (0.21 ± 0.06 vs. 0.49 ± 0.13 arbitrary units; P < 0.05). In the MCA, at 80 mmHg, DOX treatment increased the lumen (273.2 ± 4.7 vs. 238.3 ± 6.3 μm; P < 0.05) and the outer diameter (321 ± 5.3 vs. 290 ± 7.6 μm; P < 0.05) and reduced the wall-to-lumen ratio (0.09 ± 0.002 vs. 0.11 ± 0.003; P < 0.05). Damage after transient cerebral ischemia (transient MCA occlusion) was reduced in SHRSP + DOX (20.7 ± 4 vs. 45.5 ± 5% of hemisphere infarcted; P < 0.05). In the MRA, at 90 mmHg DOX, reduced wall thickness (29 ± 1 vs. 22 ± 1 μm; P < 0.001) and wall-to-lumen ratio (0.08 ± 0.004 vs. 0.11 ± 0.008; P < 0.05) without changing lumen diameter. These results suggest that MMPs are involved in hypertensive vascular remodeling in both the peripheral and cerebral vasculature and that DOX reduced brain damage after cerebral ischemia.  相似文献   

5.
Aldosterone stimulates epidermal growth factor receptor expression   总被引:6,自引:0,他引:6  
The steroid hormone aldosterone plays an important role during pathological tissue modifications, similar to cardiovascular or renal fibrosis. The underlying mechanisms for the pathological actions are not understood. Interaction of aldosterone with the epidermal growth factor (EGF) receptor is an attractive hypothesis to explain pathological tissue remodeling elicited by aldosterone, because (i) mineralocorticoids can sensitize cells for EGF, (ii) mineralocorticoid receptor (MR)-antagonists reduce EGFR-mRNA expression, (iii) EGFR itself supports the development of cardiovascular or renal fibrosis, and (iv) signaling elements involved in the pathological action of aldosterone (similar to ERK1/2 or NFkB) are typical downstream modules during EGF signaling. In addition, an interaction of aldosterone and EGF with respect to ERK1/2 activation has been described. Here we show that aldosterone stimulates EGFR expression in renal tissue of adrenalectomized rats and in human renal primary cell cultures. Furthermore, Chinese hamster ovary (CHO) cells normally devoid of EGFR or MR express EGFR after transfection with human MR (CHO-MR cells) but not after transfection with human glucocorticoid receptor (CHO-GR cells). In CHO-MR cells, EGFR-expression is up-regulated by aldosterone and inhibited by spironolactone. CHO-MR cells but not CHO-GR cells respond with ERK1/2 phosphorylation to EGF exposure. The responsiveness to other peptide hormones was virtually not affected. These data suggest that EGFR is an aldosterone-induced protein and is involved in the manifold (patho)biological actions of aldosterone.  相似文献   

6.
7.
Hereditary hypertriglyceridemic (hHTG) rats are characterized by increased blood pressure and impaired endothelium-dependent relaxation of conduit arteries. The aim of this study was to investigate the effect of long-term (4 weeks) treatment of hHTG rats with three drugs which, according to their mechanism of action, may be able to modify the endothelial function: simvastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase), spironolactone (an antagonist of aldosterone receptors) and L-arginine (a precursor of nitric oxide formation). At the end of fourth week the systolic blood pressure in the control hHTG group was 148+/-2 mm Hg and in control normotensive Wistar group 117+/-3 mm Hg. L-arginine failed to reduce blood pressure, but simvastatin (118+/-1 mm Hg) and spironolactone (124+/-4 mm Hg) treatment significantly decreased the systolic blood pressure. In isolated phenylephrine-precontracted aortic rings from hHTG rats endothelium-dependent relaxation was diminished as compared to control Wistar rats. Of the three drugs used, only simvastatin improved acetylcholine-induced relaxation of the aorta. We conclude that both simvastatin and spironolactone reduced blood pressure but only simvastatin significantly improved endothelial dysfunction of aorta. Prominent increase in the expression of eNOS in large conduit arteries may be the pathophysiological mechanism underlying the protective effect of simvastatin in hHTG rats.  相似文献   

8.
We aimed to evaluate macrophages heterogeneity and structural, functional and inflammatory alterations in rat kidney by aldosterone + salt administration. The effects of treatment with spironolactone on above parameters were also analyzed. Male Wistar rats received aldosterone (1 mgkg-1d-1) + 1% NaCl for 3 weeks. Half of the animals were treated with spironolactone (200 mg kg-1d-1). Systolic and diastolic blood pressures were elevated (p<0.05) in aldosterone + salt–treated rats. Relative kidney weight, collagen content, fibronectin, macrophage infiltrate, CTGF, Col I, MMP2, TNF-α, CD68, Arg2, and SGK-1 were increased (p<0.05) in aldosterone + salt–treated rats, being reduced by spironolactone (p<0.05). Increased iNOS and IFN-γ mRNA gene expression (M1 macrophage markers) was observed in aldosterone + salt rats, whereas no significant differences were observed in IL-10 and gene ArgI mRNA expression or ED2 protein content (M2 macrophage markers). All the observed changes were blocked with spironolactone treatment. Macrophage depletion with liposomal clodronate reduced macrophage influx and inflammatory M1 markers (INF-γ or iNOS), whereas interstitial fibrosis was only partially reduced after this intervention, in aldosterone plus salt-treated rats. In conclusion, aldosterone + salt administration mediates inflammatory M1 macrophage phenotype and increased fibrosis throughout mineralocorticoid receptors activation.  相似文献   

9.
10.
The present studies test the hypothesis that contraction to EGF is dependent on mineralocorticoids and/or an elevation in systolic blood pressure (SBP). Endothelium-denuded thoracic aortas from sham normotensive, N(omega)-nitro-L-arginine (L-NNA) hypertensive, Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR) were used in isolated tissue-bath experiments. Maximal contraction to epidermal growth factor [EGF; percentage of phenylephrine (PE; 10 umol/l)-induced contraction] was greater in strips from L-NNA (32 +/- 5%) and SHR (53 +/- 8%) rats compared with sham and WKY rats (17 +/- 1 and 12 +/- 4%, respectively). Wistar-Furth rats became only mildly hypertensive when given DOCA salt (134 +/- 6 mmHg) compared with Wistar rats (176 +/- 9 mmHg), but aortas from both strains had a similarly enhanced contraction to EGF (approximately 9 times the maximal contraction of sham aorta). Furthermore, in vitro incubation of aortas from Wistar and Wistar-Furth rats with aldosterone (10 nmol/l) increased EGF-receptor mRNA expression by >50%. These data indicate that arterial contraction to EGF may occur independent of hypertension and be stimulated by mineralocorticoids.  相似文献   

11.
To determine the effects of chronic nitric oxide (NO) blockade on the pulmonary vasculature, 58-day-old spontaneously hypertensive rats of the stroke-prone substrain (SHRSP) and Wistar-Kyoto rats (WKY) received N(omega)-nitro-L-arginine (L-NNA; 15 mg. kg(-1). day(-1) orally for 8 days). Relaxation to acetylcholine (ACh) in hilar pulmonary arteries (PAs), the ratio of right ventricular (RV) to body weight (RV/BW) to assess RV hypertrophy (RVH), and the percent medial wall thickness (WT) of resistance PAs were examined. L-NNA did not alter the PA relaxation, RV/BW, or WT in WKY. Although the PA relaxation and RV/BW in control SHRSP were comparable to those in WKY, the WT was increased (31 +/- 2 vs. 19 +/- 1%). L-NNA-treated SHRSP showed two patterns: in one group, the relaxation, RV/BW, and WT were comparable to those in the control SHRSP; in the other, impaired relaxation (36 +/- 7 vs. 88 +/- 4% for WKY) was associated with an increase in WT (37 +/- 1%) and RV/BW (0. 76 +/- 0.05). Thus the abnormal pulmonary vasculature in SHRSP at <10 wk of age is not accompanied by impaired relaxation in PAs or RVH; however, impaired relaxation is associated with increased WT and RVH.  相似文献   

12.
High-potassium diets can improve vascular function, yet the effects of potassium supplementation on ischemic stroke have not been studied. We hypothesized that dietary potassium supplementation would reduce ischemic cerebral infarct size by reversing cerebral artery hypertrophy. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were fed diets containing 0.79% potassium (LK) or 2.11% potassium (HK) for 6 wk; Wistar-Kyoto (WKY) rats were fed the LK diet. The HK diet did not reduce blood pressure, as measured by telemetry, in the SHRSP. Cerebral ischemia was induced by middle cerebral artery (MCA) occlusion. The resultant infarct was smaller in the HK-SHRSP than in the LK-SHRSP: 55.1 +/- 6.3 vs. 71.4 +/- 2.4% of the hemisphere infarcted (P < 0.05). Infarcts were smaller in WKY rats (33.5 +/- 4.8%) than in LK-SHRSP or HK-SHRSP. The vessel wall of MCAs from LK-SHRSP was hypertrophied compared with WKY rats; this was reversed in HK-SHRSP. RT-PCR analysis of the cerebral vessels showed that expression of platelet-derived growth factor receptors-alpha and -beta, epidermal growth factor receptor, and collagen I and III was increased in the vessels from LK-SHRSP compared with WKY rats and reduced in HK-SHRSP. These results suggest that potassium supplementation provides neuroprotection in a model of ischemic stroke independent of blood pressure and possibly through changes in vascular structure.  相似文献   

13.
14.
To study the role of the growth hormone receptor (GHR) in the development of cardiovascular structure and function, female GHR gene-disrupted or knockout (KO) and wild-type (WT) mice at age 18 wk were used. GHR KO mice had lower plasma renin levels (12 +/- 2 vs. 20 +/- 4 mGU/ml, P < 0.05) and increased aortic endothelial NO synthase (eNOS) expression (146%, P < 0.05) accompanied by a 25% reduction in systolic blood pressure (BP, 110 +/- 4 vs. 147 +/- 3 mmHg, P < 0.001) compared with WT mice. Aldosterone levels were unchanged, whereas the plasma potassium concentration was elevated by 14% (P < 0.05) in GHR KO. Relative left ventricular weight was 14% lower in GHR KO mice (P < 0.05), and cardiac dimensions as analyzed by echocardiography were similarly reduced. Myograph studies revealed a reduced maximum contractile response in the aorta to norepinephrine (NE) and K(+) (P < 0.05), and aorta media thickness was decreased in GHR KO (P < 0.05). However, contractile force was normal in mesenteric arteries, whereas sensitivity to NE was increased (P < 0.05). Maximal acetylcholine-mediated dilatation was similar in WT and GHR KO mice, whereas the aorta of GHR KO mice showed an increased sensitivity to acetylcholine (P < 0.05). In conclusion, loss of GHR leads to low BP and decreased levels of renin in plasma as well as increase in aortic eNOS expression. Furthermore, GHR deficiency causes functional and morphological changes in both heart and vasculature that are beyond the observed alterations in body size. These data suggest an important role for an intact GH/IGF-I axis in the maintenance of a normal cardiovascular system.  相似文献   

15.
The epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport using ERK1/2 as a downstream effector. Furthermore, the EGF receptor (EGFR) is involved in signaling by G-protein-coupled receptors, growth hormone, and cytokines via transactivation. It has been suggested that steroids interact with peptide hormones. Previously, we have shown that aldosterone modulates EGF responses in Madin-Darby canine kidney cells (Gekle, M., Freudinger, R., Mildenberger, S., and Silbernagl, S. (2002) Am. J. Physiol. 282, F669-F679). Here, we tested the hypothesis that human EGFR-1 can confer alternative aldosterone responsiveness with respect to ERK1/2 phosphorylation to Chinese hamster ovary cells, which do not express EGFR. Wild-type Chinese hamster ovary cells did not respond to EGF or aldosterone. After transfection of human EGFR-1, the cells responded to EGF, but not to aldosterone. However, when submaximal concentrations of EGF were used, nanomolar concentrations of aldosterone potentiated the action of EGF within minutes, resulting in a leftward shift of the EGF dose-response curve. This was not the case in mock-transfected cells. The EGFR kinase inhibitor tyrphostin AG1478 or the MEK1/2 inhibitor U0126 completely prevented the effect. Furthermore, aldosterone enhanced Tyr phosphorylation of c-Src and EGFR, and an inhibitor of cytosolic tyrosine kinases (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriociaine) prevented the action of aldosterone. Our data show that aldosterone uses the EGF-EGFR-MEK1/2-ERK1/2 signaling cascade to elicit its alternative effects. In the presence of EGF, aldosterone leads to EGFR transactivation via cytosolic tyrosine kinases of the Src family.  相似文献   

16.
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.  相似文献   

17.
Accumulating evidence demonstrates that aldosterone can cause extra-cellular matrix (ECM) accumulation, in addition to regulating sodium and potassium homeostasis. Increased extra-cellular matrix production by renal glomerular mesangial cells has been suggested to be involved in pathogenesis of glomerular sclerosis. The present studies examine whether aldosterone is also produced in renal mesangial cells, and the effect of aldosterone on ECM accumulation in these cells. In cultured renal mesangial cells, aldosterone synthase (CYP11B2), mineralocorticoid receptor (MR), and 11beta-HSD2 mRNA expressions were detected by RT-PCR. The ability of renal mesangial cells to produce aldosterone was confirmed by directly detecting aldosterone in culture medium via radioimmunoassay. Real-time RT-PCR showed that the expression of CYP11B2 mRNA in mesangial cells was significantly enhanced by AngII (P<0.001) and by potassium (P<0.05). Exposure of the cultured mesangial cells to aldosterone significantly increased fibronectin production from 12.4+/-1.9 to 74.6+/-16.8ng/ml (P<0.05). The aldosterone induced fibronectin production was abolished by aldosterone receptor antagonist spironolactone. Aldosterone also increased the TGF-beta1 reporter luciferase activity from 0.8+/-0.1 to 1.7+/-0.1 (P<0.05). Immunoblot showed TGF-beta1 protein expression was increased following aldosterone treatment. Blocking TGF-beta1 signaling pathway by knocking down Smad2 significantly blunted the aldosterone induced fibronectin production. The present studies indicate that renal mesangial cell is a target of local aldosterone action, which promotes ECM protein fibronectin production via TGF-beta1/Smad2 signaling pathway.  相似文献   

18.
Lai L  Pen A  Hu Y  Ma J  Chen J  Hao CM  Gu Y  Lin S 《Life sciences》2007,81(7):570-576
Accumulating evidence shows that aldosterone plays an important role in the pathogenesis of renal fibrosis but its mechanism has not been completely defined. Recently, exogenous administration of aldosterone significantly alleviated ischemic states in a model of femoral artery ligated rats, accompanied by an obvious enhancement of VEGF upregulation. We hypothesized that aldosterone may also regulate the expression of VEGF in the kidney. To confirm this, cultured cortical collecting duct epithelial cells (M-1 cell line) were incubated with aldosterone and control media, respectively. The pathway by which aldosterone regulates VEGF expression was tested by the administration of spironolactone, a specific mineralocorticoid receptor (MR) antagonist. VEGF expression was detected by immunofluorescence staining, ELISA, Western blot and RT-PCR. Aldosterone induced an elevation of VEGF excretion in a time- and dose-dependent manner. Western blotting showed a 1.4-fold elevation in cytosolic VEGF expression following aldosterone (10(-8) M) incubation for 48 h (p<0.01). After aldosterone (10(-7) M) incubation for 48 h, the mRNA level of VEGF164 and VEGF120 showed 1.8- and 1.7-fold increases, respectively (p<0.01). This upregulation was almost completely blocked by spironolactone as shown both by mRNA levels and cytosolic protein levels. In addition, the mRNA of aldosterone receptor was detected in M-1 cells. We demonstrated for the first time that aldosterone induced VEGF expression in M-1 cells, an effect mediated by classic mineralocorticoid receptor. This finding provides experimental evidence for the local non-hemodynamic action of aldosterone.  相似文献   

19.
We have previously reported that systemic epidermal growth factor (EGF) treatment in rats reduces the amount of adipose tissue despite an unaltered food intake. The mitochondrial uncoupling proteins (UCP2 and UCP3) are thought to uncouple the respiratory chain and thus to increase energy expenditure. In order to find out whether the UCP system was involved in the EGF-induced weight loss, the effects of EGF on UCP2 and UCP3 in adipose tissue and skeletal muscle were investigated in the present study. Eight rats were treated with placebo or EGF (150 microg/kg/day) for seven days via mini-osmotic pumps. The EGF-treated rats gained significantly less body weight during the study period than the placebo-treated animals and had significantly less adipose tissue despite a similar food intake. The placebo group and the EGF group had similar UCP2 mRNA expression (in both adipose tissue and skeletal muscle), whereas the EGF-treated group compared to the placebo group had significantly higher UCP3 mRNA expression in both skeletal muscle (3.76 +/- 0.90 vs 8.41 +/- 0.87, P < 0.05) and in adipose tissue (6.38 +/- 0.71 vs 12.48 +/- 1.79, P < 0.05). In vitro studies with adipose tissue fragments indicated that the EGF effect probably is mediated indirectly as incubations with EGF (10 microM) were unable to affect adipose tissue UCP expression, whereas incubations with bromopalmitate stimulated both UCP2 and UCP3 mRNA expression twofold. Thus, EGF treatment in vivo was found to enhance UCP3 mRNA expression in both adipose tissue and skeletal muscle, which may indicate that the EGF effect on body composition might involve up-regulation of UCP3 in skeletal muscle and adipose tissue.  相似文献   

20.
The steroid hormone aldosterone is a major regulator of extracellular volume and blood pressure. Aldosterone effectors are for example the epithelial Na(+) channel (ENaC), the Na(+)-K(+)-ATPase and the proximal tubule Na(+)/H(+) exchanger isoform 3 (NHE3). The aim of this study was to investigate whether aldosterone acts directly on proximal tubule cells to stimulate NHE3 and if so whether the EGF-receptor (EGFR) is involved. For this purpose, primary human renal proximal tubule cells were exposed to aldosterone. NHE3 activity was determined from Na(+)- dependent pH-recovery, NHE3 surface expression was determined by biotinylation and immunoblotting. EGFR-expression was assessed by ELISA. pH(i)- measurements revealed an aldosterone-induced increase in NHE3 activity, which was inhibited by the mineralocorticoid receptor blocker spironolactone and by the EGFR-kinase inhibitor AG1478. Immunoprecipitation and immunoblot analysis showed an aldosterone-induced increase in NHE3 surface expression, which was also inhibited by spironolactone and AG1478. Furthermore, aldosterone enhanced EGFR-expression. In conclusion, aldosterone stimulates NHE3 in human proximal tubule cells. The underlying mechanisms include AG1478 inhibitable kinase and are paralleled by enhanced EGFR expression, which could be compatible with EGF-receptor-pathway-dependent surface expression and activity of NHE3 in human primary renal proximal tubule epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号