首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黑土母质熟化过程微生物群落碳源代谢特征   总被引:1,自引:0,他引:1  
张志明  韩晓增 《生态学报》2015,35(21):6957-6964
东北黑土区由于表土丧失,母质裸露等问题,严重威胁粮食生产和生态环境,通过揭示母质肥力形成过程中微生物群落的碳源利用特征可以让人们更好的理解肥力形成过程中相关微生物过程。以海伦农田生态系统国家野外科学观测研究站长期定位试验为材料,研究母质不同熟化过程下微生物群落碳源代谢特征,结果表明:苜蓿草熟化过程(PAfl)、农田化肥配施有机物熟化过程(PCS+F+OM)可培养微生物数量最多。自然熟化过程(PNat)、苜蓿草熟化过程、农田化肥农产品全循环熟化过程(PCS+F+BM)、农田化肥加有机肥配合型熟化过程可以将微生物活性提高到常规农田黑土的水平。不同熟化过程下微生物群落对单个碳源的利用不同。主成分分析表明自然熟化过程、农田化肥投入熟化过程(PCS+F)、农田化肥农产品全循环熟化过程、农田化肥加有机肥配合型熟化过程与常规农田黑土微生物代谢特征类似。研究表明不同母质熟化过程通过影响微生物群落结构导致对各个碳源的利用发生变化,最终改变了整体碳源代谢特征。  相似文献   

2.
简述了工业生物技术领域在过程科学方面的研究现状及发展趋势,从"细胞群体效应及过程放大原理"、"工业生物过程物质和能量传递与生物转化规律"、"工业生物过程优化新方法"等3个方面介绍了我国工业生物技术过程科学的重点进展和在国际上的地位,最后从"生物原料高效转化"、"生物转化过程物质和能量协调和匹配"、"生物过程强化"、"生物过程系统集成"等方面提出了工业生物技术在过程科学研究方面未来的战略方向。  相似文献   

3.
哺乳动物排卵过程复杂,包括卵泡发育、卵泡成熟破裂后的排卵以及黄体形成和退化等过程。目前研究表明,排卵过程受低氧微环境和响应低氧条件的因子-低氧诱导因子(Hypoxic inducible factor, HIF)的影响。低氧调控HIF并影响许多生理过程,如血管生成、炎症反应等。尽管排卵的具体过程早已阐明,但低氧参与调控排卵过程的分子机制并不十分清楚。本文主要综述了哺乳动物在排卵过程中低氧环境如何产生以及HIF如何调控该过程的分子机制,旨在进一步理解排卵机制和卵巢的综合性功能,为相关的卵巢疾病提供一定的理论依据。  相似文献   

4.
 植物群落次生演替过程的有限序列在一定意义上构成一随机过程。浙江东部常绿阔叶林次生演替的随机过程系统可以近似地看成线性系统,因而可以用马尔可夫过程描述。本文以群落主要乔木优势种作为马尔可夫过程的状态变量。用“空间序列代替时间序列”的研究方法测得自然次生演替过程和干扰次生演替过程群落主要优势乔木种的更新概率,以此建立了马尔可夫过程的一步平稳转移概率矩阵。应用马尔可夫链模型对常绿阔叶林的自然和干扰次生演替过程进行了模拟。模型还给出了次生演替过程群落主要优势乔木种类的数量动态,为深入研究常绿阔叶林次生演替规律以及林业生产和管理等提供了依据。  相似文献   

5.
于明  周云龙 《植物学报》2001,18(3):347-355
苔藓植物孢子发生的过程是一个复杂的形态建成的过程,在此过程中,孢子母细胞经过减数分裂的两次精确的核分裂以及细胞质分裂,形成单倍体的四分孢子,再经孢子壁的发育过程,形成成熟的孢子。本文重点介绍了苔藓植物孢子发生过程中细胞质裂片、质体及核的变化、微管系统及纺锤体、胞质分裂和孢子壁形成过程的特点及其研究进展。  相似文献   

6.
干细胞在多细胞生物体内广泛存在,其增殖过程在生命体的生长、发育、衰老、组织修复过程中起着重要作用。正常组织中的细胞增殖过程受到严格的控制,干细胞的异常增殖与恶性肿瘤、肥胖症、再生障碍性贫血等疾病有密切关系。生命体内异质性细胞的增殖过程是复杂的动力系统行为,干细胞异常增殖过程伴随细胞的可塑性变化和细胞间相互作用的再平衡过程,如何对这一过程进行定量描述是重要的研究课题。本文构建包含细胞的增殖分化指标和异常增殖性指标异质性的干细胞增殖模型,通过所建立的模型研究由于微环境变化引起的细胞异常增殖过程的熵变化,建立不同增殖条件下的系统熵变化与宏观动力学和系统参数之间的关系。结果表明,在细胞微环境变化引起异常增殖和恢复的过程中,系统的熵与细胞数量之间存在对应关系,而与微环境变化的路径无关。 此外,熵对细胞数量的依赖关系在异常增殖和恢复阶段表现出不同的行为,显示了生物过程的微观不可逆性。本文从物理学的角度对细胞异常增殖过程中熵变化与细胞数量变化的动力学给出定量刻画,为定量描述异质性干细胞增殖过程给出新的研究思路。  相似文献   

7.
<正>生物过程是一个复杂的动态非线性系统,是生物制造必不可少的环节。文章对我国近五年来生物过程关键技术与装备的研发进展进行了综述,主要包括生物过程优化技术与装置、流场特性与生理特性相结合的生物过程放大技术与测定装置、生物过程关键参数在线检测技术与装置等,并结合相关产业化案例  相似文献   

8.
名刊封面     
《植物杂志》2010,(5):56-57
病毒的入侵过程 病毒入侵宿主细胞有几个固定的过程。首先病毒需黏附于宿主细胞表面,接着向细胞内注入自己的DNA或RNA,最后脱去蛋白质衣壳,完成入侵过程。其中,病毒与宿主的“第一次亲密接触”——黏附过程是病毒传播的重要一环。  相似文献   

9.
对胡桃楸、水曲柳和黄菠萝叶出生和死亡过程的分析表明,它们的叶出生是一个渐进过程,持续期可达40~65d,不同时期出生的叶可形成明显的龄级结构。小叶生长过程基本上呈S型。叶死亡过程可分为小叶和复叶两种情况,初期落叶以小叶为主,凋落量少、速度慢;而后整个复叶才开始凋落,使落叶数量和速度加快,整个落叶期仅在30~35d左右。小叶凋落过程属于DeeveyⅠ型存活曲线,复叶凋落过程基本符合DeeveyⅡ型存活曲线。  相似文献   

10.
真核生物转录的发现   总被引:5,自引:3,他引:2  
郭晓强 《生命的化学》2004,24(6):526-528
转录过程是遗传信息传递过程中一个非常重要的阶段,是生命研究中一个重要方面.该文阐述真核转录的研究进程,重点介绍卢德(Roeder RG)在此过程中发挥的重要作用,以熟悉这位科学家的贡献和真核转录发现的历史过程.  相似文献   

11.
典型岩溶山区土地石漠化过程——以粤北岩溶山区为例   总被引:8,自引:0,他引:8  
中国南方岩溶区是土地石漠化广为发生发展的脆弱生态区域。运用面上调查、定位观测和模拟试验相结合的方法,以粤北岩溶山区为例,从地表生态过程的角度对土地石漠化过程进行解析、研究。在轻度石漠化向极重度石漠化发展的过程中,仅2-3 a,植被就从灌草混合群落退化为草本群落,物种减少76%,植被盖度降低87.2%;土壤侵蚀量逐渐加大,土壤物质不断流失和丢失,土层变薄,侵蚀模数呈10多倍、数10倍增加。岩溶坡面特殊的水文过程和水循环模式,使石漠化土地上"四水"转化迅速。随着石漠化程度加重,地表水和壤中水流失量加大,石灰岩脉动式"生长"速度加快,使基岩裸露率由30%—50%增至90%以上,最终导致土壤粗化,养分减少,生物生产量减少89%甚至更多。这表明,土地石漠化过程是由植被退化丧失过程、土壤侵蚀过程、地表水流失过程、碳酸盐岩溶蚀侵蚀过程和土地生物生产力退化过程相互联系、组合而成的土地退化过程,也是岩溶山区土地生态系统演变为石质荒漠系统的地表生态过程。  相似文献   

12.
植物细胞分化的启动控制和分化过程的阶段性   总被引:23,自引:0,他引:23  
崔克明 《生命科学》1997,9(2):49-54
位置效应决定着细胞分化的方向,不同部位位置效应的确切内涵不同。细胞分化过程由不同阶段组成,其间有一个阶段为临界期,此期前的过程是可逆的,即可脱分化,临界期一过就成为不可逆的了。无论是细胞的分化过程;还是脱分化过程,都是一个阶段一个阶段地有序通过,中间过程不可逾越。程序性死亡是细胞分化的最后阶段,此程序的开启就是临界期的结束。细胞分化过程中还可能存在一种临界状态,在此状态下最容易改变细胞分化的方向。  相似文献   

13.
光合作用的核心问题之一是光合作用的原初反应,即光能的高效吸收、传递和转化的机理。本研究采用飞秒吸收技术,通过以400nm激发,520~700nm连续探测,对PSⅡ颗粒及核心复合物中的能量传递、电荷分离等过程进行了研究。在PSⅡ颗粒中,得到的0.16ps,2.8ps和20.9ps等过程为在光系统Ⅱ捕光天线复合物(LHCⅡ)中的能量传递过程,而8.6ps过程为由LHCⅡ向PSⅡ核心和反应中心的能量传递过程。在PSⅡ核心复合物中,得到的0.35ps和11.2ps过程与PSⅡ内周天线之间的能量传递过程有关,而2.9ps和20.1ps过程可能为电荷分离过程或与PSⅡ反应中心有关的能量传递过程。  相似文献   

14.
表观遗传信息DNA甲基化在动物的发育、细胞分化和器官形成过程中,起着至关重要的作用.近期,关于DNA甲基化在脊椎动物胚胎发育和生殖细胞发育过程重编程的研究取得了重要的进展.发现斑马鱼的早期胚胎完整地继承了精子的DNA甲基化图谱,而哺乳动物的早期胚胎和原始生殖细胞发育过程则经历了整体去甲基化并重新建立甲基化图谱的过程,但胚胎发育过程中基因的印迹区未发生DNA去甲基化,而生殖细胞发育过程中印迹区的甲基化修饰被消除.  相似文献   

15.
泛素化是真核细胞特有的蛋白质翻译后修饰方式,调节真核细胞内多种重要生理过程,例如蛋白质稳态、细胞周期、免疫反应、DNA修复以及囊泡转运等。鉴于泛素化对于生命活动的重要性,病原菌在与宿主细胞的长期进化过程中衍生出一系列针对宿主泛素化过程的效应蛋白质,调控宿主体内泛素化过程,从而构建有利于病原菌自身生长繁殖的内环境。嗜肺军团菌是一种革兰氏阴性菌,是军团菌肺炎的致病菌,能够引起发热和肺部感染,重型病死率高达15%~30%。Dot/Icm Ⅳ型分泌系统是嗜肺军团菌侵染过程中最主要的毒力系统。在侵染宿主细胞的过程中,嗜肺军团菌利用该分泌系统,分泌超过330种效应蛋白质,协助细菌在宿主胞内生存、增殖和逃逸。多种嗜肺军团菌效应蛋白质通过直接或者间接的方式对宿主泛素化过程进行调控。近年的研究发现,多种效应蛋白质可以介导不同于真核生物经典泛素化的新型泛素化过程。本文介绍了嗜肺军团菌效应蛋白质介导的新型泛素化过程的最新研究进展,为理解泛素化过程在嗜肺军团菌致病过程中的重要作用提供参考依据。  相似文献   

16.
《生物产业技术》2011,(1):57-59
——请您简单介绍一下我国工业生物过程研究现状和趋势。 谭:工业生物过程是以可再生生物质资源为原料基础生产化学品、材料与能源的新型工业模式。工业生物过程工程包括过程单元、过程装备和过程优化三个主要方面。中国是一个工业生物技术大国,发酵体积1000万立方米.位居世界第一。  相似文献   

17.
植物发育过程中的细胞程序性死亡   总被引:4,自引:0,他引:4  
细胞程序性死亡(PCD)是植物发育过程中必不可少的一部分,近年来对植物发育过程中的细胞程序性死亡机制的研究已经广泛开展。植物发育过程中的PCD对植物自身形态建成和组织分化有重要意义。一般认为动、植物的PCD有很大的相似性,但植物发育过程也有着独特的PCD机制,例如依靠有裂解功能的液泡来参与PCD。通过比较植物和其他生物发育过程中的PCD,可对植物发育过程中PCD的特征有着更深入的了解。说明植物发育过程中PCD的研究将在理论和生产上有重大意义。  相似文献   

18.
鸟苷发酵过程代谢流迁移的分析   总被引:7,自引:0,他引:7  
以典型的代谢控制发酵产品鸟苷为例说明了一种基于过程参数的相关分析来研究发酵过程中代谢流迁移的方法。通过对发酵过程多参数的相关性分析,结合生物合成代谢途径、氨基酸和有机酸积累的分析,确认了发酵过程代谢流向EMP途径的迁移,认为造成这种代谢流迁移的原因可能是过程铵离子积累。在此基础上,通过对过程参数实时检测分析和及时调整EMP和HMP代谢通量使产率提高了35%。   相似文献   

19.
堆肥是有机固体废弃物处理与资源化的主要途径之一,包括矿化和腐殖化两个过程,且都和微生物活动有关。矿化过程会产生二氧化碳(CO2)等温室气体,是一个典型的温室气体释放过程。腐殖化过程则会产生稳定的腐殖质,则是优良的土壤改良剂。在堆肥稳定化的前提下,如何有效减少堆肥过程中的CO2释放,强化堆肥的腐殖化过程,增加作为优良土壤改良剂的腐殖质产量,对于发展低碳化堆肥技术,实现堆肥的资源化利用具有重要意义。本文选取水稻秸秆和餐厨垃圾作为堆肥原料,研究不同预处理对堆肥过程中矿化和腐殖化过程的影响,并探讨了不同预处理影响矿化和腐殖化过程的微生物机理。结果表明堆料加热预处理后,堆肥的矿化作用被明显削弱,总碳(TC)减量率仅为23.4%,并且最后形成了可观产量的稳定腐殖质(每kg堆料70 d后腐殖质含量为22.09 g±0.35 g,腐殖化系数达2.0),因此加热预处理后的堆肥过程在保证稳定腐殖质的产量前提下更低碳化。预处理通过影响堆料的性质和初始状态下堆料中微生物的种类和数量从而影响堆肥的矿化和腐殖化过程。活性微生物量与脱氢酶活性是矿化过程的主要决定因素,而多酚氧化酶活性主要影响堆肥的稳定腐殖化过程。  相似文献   

20.
常娟  王根绪  高永恒  王一博 《生态学报》2012,32(23):7289-7301
有无积雪覆盖下浅层土壤水热过程是青藏高原多年冻土区水能循环中的一个重要不确定因素.为了研究积雪覆盖对高寒沼泽、草甸浅层土壤水热过程的影响,在青藏高原多年冻土区选择了典型的有无积雪覆盖的沼泽、草甸建立观测场,观测浅层土壤的温度和水分状况.通过分别研究积雪对高寒沼泽、草甸浅层土壤温度和水分的影响,结果表明:高寒沼泽、草甸在有积雪覆盖下浅层土壤开始冻结和消融的时间都有所滞后,且冻结持续时间相应有所增加.由于积雪覆盖,浅层土壤温度变化速率略有减小而水分变化速率略有增加,积雪起到了抑制土壤温度变化速率和促进土壤水分变化速率的作用.积雪覆盖对秋季冻结过程和夏季融化过程浅层土壤的温度和水分的影响明显大于冬季冻结降温过程和春季升温过程,且对融化过程的影响较冻结过程明显.通过对比分析有无雪盖沼泽和草甸土壤,说明积雪的覆盖对沼泽土壤温度的影响要大于草甸土壤,对土壤水分融升过程的影响大于冻降过程,且对沼泽浅层土壤的影响大于草甸浅层土壤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号