首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To determine whether differential sympathetic nerve responses to hypoxia are explained by opposing effects of hypoxia upon sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM), the cardiac sympathetic nerve and the renal sympathetic nerve were recorded in anesthetized and vagotomized rabbits. Renal sympathetic nerve was activated by the injection of sodium cyanide solution close to the bifurcation of the common carotid artery and/or by inhalation of hypoxic gas (3% oxygen-97% nitrogen). On the other hand, cardiac sympathetic nerve was inhibited by these stimuli. Barosensitive (inhibited by the stimulation of baroreceptor afferents) reticulospinal (antidromically activated by the stimulation of the spinal cord) neurons in the RVLM were divided into three groups according to their responses to hypoxic stimulation: neurons (Type I, n = 25), the activity of which was inhibited by the injection of sodium cyanide solution close to the bifurcation of the common carotid artery and/or by inhalation of hypoxic gas, neurons (Type II, n = 99), the activity of which was facilitated by the same stimulation, and neurons (Type III, n = 11), the activity of which was not changed. These data indicated that the differential responses of cardiac and renal sympathetic nerves might be due to opposing effects of hypoxia on individual RVLM neurons.  相似文献   

2.
Anatomical studies indicate that sympathetic preganglionic neurons receive inputs from several brain stem cell groups, but the functional significance of this organization for vasomotor control is not known. We studied the roles of two brain stem premotor cell groups, the medullary raphé and the rostral ventrolateral medulla (RVLM), in determining the activity of sympathetic vasomotor supply to the tail of urethane-anesthetized, artificially ventilated rats. Chemical inactivation of either RVLM (bilaterally) or raphé cells by microinjecting glycine (120-200 nl, 0.5 M) or muscimol (40-160 nl, 2.1-8 mM) was sufficient to inhibit ongoing tail sympathetic fiber activity and to block its normally strong response to mild cooling via the trunk skin (reducing rectal temperature from 38.5 to 37 degrees C). After bilateral RVLM inactivation, tail sympathetic fibers could still be excited by chemical stimulation of raphé neurons (l-glutamate, 120 nl, 50 mM), and strong cooling (rectal temperature approximately 33 degrees C) caused a low level of ongoing activity. After chemical inhibition of raphé neurons, however, neither strong cooling nor chemical stimulation of RVLM neurons activated tail sympathetic fibers. Electrical stimulation of the RVLM elicited tail sympathetic fiber volleys before and after local anesthesia of the raphé (150-500 nl of 5% tetracaine), demonstrating the existence of an independent descending excitatory pathway from the RVLM. The data show that neurons in both the medullary raphé and the RVLM, acting together, provide the essential drive to support vasomotor tone to the tail. Inputs from these two premotor nuclei interact in a mutually facilitatory manner to determine tonic, and cold-induced, tail sympathetic activity.  相似文献   

3.

Background

Recently the vagal output of the central nervous system has been shown to suppress the innate immune defense to pathogens. Here we investigated by anatomical and physiological techniques the communication of the brain with the spleen and provided evidence that the brain has the capacity to stimulate the production of antigen specific antibodies by its parasympathetic autonomic output.

Methodology/Principal Findings

This conclusion was reached by successively demonstrating that: 1. The spleen receives not only sympathetic input but also parasympathetic input. 2. Intravenous trinitrophenyl-ovalbumin (TNP-OVA) does not activate the brain and does not induce an immune response. 3. Intravenous TNP-OVA with an inducer of inflammation; lipopolysaccharide (LPS), activates the brain and induces TNP-specific IgM. 4. LPS activated neurons are in the same areas of the brain as those that provide parasympathetic autonomic information to the spleen, suggesting a feed back circuit between brain and immune system. Consequently we investigated the interaction of the brain with the spleen and observed that specific parasympathetic denervation but not sympathetic denervation of the spleen eliminates the LPS-induced antibody response to TNP-OVA.

Conclusions/Significance

These findings not only show that the brain can stimulate antibody production by its autonomic output, it also suggests that the power of LPS as adjuvant to stimulate antibody production may also depend on its capacity to activate the brain. The role of the autonomic nervous system in the stimulation of the adaptive immune response may explain why mood and sleep have an influence on antibody production.  相似文献   

4.
The rostral ventrolateral medulla differentially regulates sympathetic output to different vascular beds, possibly through the release of various neurotransmitters and peptides that may include pituitary adenylate cyclase-activating polypeptide (PACAP). An intrathecal administration of PACAP increases splanchnic sympathetic nerve activity and heart rate, but not mean arterial blood pressure. The mechanism behind this response is unknown but may be due to a differential control of sympathetic outflows. In this study we sought 1) to investigate whether intrathecal PACAP differentially affects sympathetic outflow, 2) to determine whether the intrathecal responses to PACAP are solely due to a spinally mediated mechanism, and 3) to determine whether intrathecal PACAP affects metabolic function. Experiments using urethane-anesthetized, vagotomized, ventilated, and paralyzed adult male Sprague-Dawley rats were conducted in this study. Intrathecal injections of PACAP-38 were given, and mean arterial pressure, heart rate, the activity of regional sympathetic nerves, end-tidal CO(2), and core temperature were recorded. The novel findings of this study are that 1) intrathecal PACAP-38 causes a prolonged widespread sympathoexcitation in multiple sympathetic beds, 2) this widespread sympathoexcitation is mediated within the spinal cord itself since spinal transection does not abrogate the response, and 3) that intrathecal PACAP-38 increases basal metabolic rate. Therefore, we conclude that intrathecal PACAP acts in the spinal cord to cause a prolonged widespread sympathoexcitation and that PACAP also causes an increase in basal metabolic rate that includes an increase in brown adipose tissue thermogenesis in our rat preparation.  相似文献   

5.
The dorsomedial hypothalamic nucleus (DMH) is believed to play a key role in mediating vasomotor and cardiac responses evoked by an acute stress. Inhibition of neurons in the rostral ventrolateral medulla (RVLM) greatly reduces the increase in renal sympathetic nerve activity (RSNA) evoked by activation of the DMH, indicating that RVLM neurons mediate, at least in part, the vasomotor component of the DMH-evoked response. In this study, the first aim was to determine whether neurons in the medullary raphe pallidus (RP) region also contribute to the DMH-evoked vasomotor response, because it has been shown that the DMH-evoked tachycardia is mediated by the RP region. The second aim was to directly assess the effect of DMH activation on the firing rate of RVLM sympathetic premotor neurons. In urethane-anesthetized rats, injection of the GABA(A) receptor agonist muscimol (but not vehicle solution) in the RP region caused a modest ( approximately 25%) but significant reduction in the increase in RSNA evoked by DMH disinhibition (by microinjection of bicuculline). In other experiments, disinhibition of the DMH resulted in a powerful excitation (increase in firing rate of approximately 400%) of 5 out of 6 spinally projecting barosensitive neurons in the RVLM. The results indicate that neurons in the RP region make a modest contribution to the renal sympathoexcitatory response evoked from the DMH and also that sympathetic premotor neurons in the RVLM receive strong excitatory inputs from DMH neurons, consistent with the view that the RVLM plays a key role in mediating sympathetic vasomotor responses arising from the DMH.  相似文献   

6.
To determine the organization of presympathetic vasomotor drive by phenotypic populations of rostral ventrolateral medulla (RVLM) neurons, we examined the somatosympathetic reflex (SSR) evoked in four sympathetic nerves together with selective lesions of RVLM presympathetic neurons. Urethane-anesthetized (1.3 g/kg ip), paralyzed, vagotomized and artificially ventilated Sprague-Dawley rats (n = 41) were used. First, we determined the afferent inputs activated by sciatic nerve (SN) stimulation at graded stimulus intensities (50 sweeps at 0.5-1 Hz, 1-80 V). Second, we recorded sympathetic nerve responses (cervical, renal, splanchnic, and lumbar) to intensities of SN stimulation that activated A-fiber afferents (low) or both A- and C-fiber afferents (high). Third, with low-intensity SN stimulation, we examined the cervical SSR following RVLM microinjection of somatostatin, and we determined the splanchnic SSR in rats in which presympathetic C1 neurons were lesioned following intraspinal injections of anti-dopamine-β-hydroxylase-saporin (anti-DβH-SAP). Low-intensity SN stimulation activated A-fiber afferents and evoked biphasic responses in the renal, splanchnic, and lumbar nerves and a single peak in the cervical nerve. Depletion of presympathetic C1 neurons (59 ± 4% tyrosine hydroxylase immunoreactivity profiles lesioned) eliminated peak 2 of the splanchnic SSR and attenuated peak 1, suggesting that only RVLM neurons with fast axonal conduction were spared. RVLM injections of somatostatin abolished the single early peak of cervical SSR confirming that RVLM neurons with fast axonal conduction were inhibited by somatostatin. It is concluded that unmyelinated RVLM presympathetic neurons, presumed to be all C1, innervate splanchnic, renal, and lumbar but not cervical sympathetic outflows, whereas myelinated C1 and non-C1 RVLM neurons innervate all sympathetic outflows examined. These findings suggest that multiple levels of neural control of vasomotor tone exist; myelinated populations may set baseline tone, while unmyelinated neurons may be recruited to provide actions at specific vascular beds in response to distinct stressors.  相似文献   

7.
8.
The periaqueductal gray (PAG) is an important integrative region in the regulation of autonomic outflow and cardiovascular function and may serve as a regulatory center as part of a long-loop pathway during somatic afferent stimulation with acupuncture. Because the ventrolateral PAG (vlPAG) provides input to the rostral ventrolateral medulla (rVLM), an important area for electroacupuncture (EA) regulation of sympathetic outflow, we hypothesized that the vlPAG plays a role in the EA-related modulation of rVLM premotor sympathetic neurons activated during visceral afferent stimulation and autonomic excitatory reflexes. Cats were anesthetized and ventilated, and heart rate and mean blood pressure were monitored. Stimulation of the splanchnic nerve by a pledget of filter paper soaked in bradykinin (BK, 10 mug/ml) every 10 min on the gallbladder induced consistent cardiovascular reflex responses. Bilateral stimulation with EA at acupoints over the pericardial meridian (P5-6) situated over the median nerve reduced the increases in blood pressure from 34 +/- 3 to 18 +/- 5 mmHg for a period of time that lasted for 60 min or more. Unilateral inactivation of neuronal activity in the vlPAG with 50-75 nl of kainic acid (KA, 1 mM) restored the blood pressure responses from 18 +/- 3 to 36 +/- 5 mmHg during BK-induced gallbladder stimulation, an effect that lasted for 30 min. In the absence of EA, unilateral microinjection of the excitatory amino acid dl-homocysteic acid (DLH, 4 nM) in the vlPAG mimicked the effect of EA and reduced the reflex blood pressure responses from 35 +/- 6 to 14 +/- 5 mmHg. Responses of 21 cardiovascular sympathoexcitatory rVLM neurons, including 12 that were identified as premotor neurons, paralleled the cardiovascular responses. Thus splanchnic nerve-evoked neuronal discharge of 32 +/- 4 spikes/30 stimuli in six neurons was reduced to 10 +/- 2 spikes/30 stimuli by EA, which was restored rapidly to 28 +/- 4 spikes/30 stimuli by unilateral injection of 50 nl KA into the vlPAG. Conversely, 50 nl of DLH in the vlPAG reduced the number of action potentials of 5 rVLM neurons from 30 +/- 4 to 18 +/- 4 spikes/30 stimuli. We conclude that the inhibitory influence of EA involves vlPAG stimulation, which, in turn, inhibits rVLM neurons in the EA-related attenuation of the cardiovascular excitatory response during visceral afferent stimulation.  相似文献   

9.
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.  相似文献   

10.
To elucidate the central neural pathways contributing to the thermogenic component of the autonomic response to intravenous administration of leptin, experiments were conducted in urethane-chloralose-anesthetized, ventilated rats to address 1) the role of neurons in the rostral ventromedial medulla, including raphe pallidus (RPa), in the leptin-evoked stimulation of brown adipose tissue (BAT) sympathetic nerve activity (SNA); and 2) the potential thermolytic effect of 5-hydroxytryptamine(1A) (5-HT(1A)) receptors on RPa neurons that influence BAT thermogenesis. Leptin (1 mg/kg) administration increased BAT SNA by 1,219% of control, BAT temperature by 2.8 degrees C, expired CO(2) by 1.8%, heart rate by 90 beats/min, and mean arterial pressure by 12 mmHg. Microinjection of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into RPa resulted in a prompt and sustained reversal of the leptin-evoked stimulation of BAT SNA, BAT thermogenesis, and heart rate, with these variables returning to their pre-leptin control levels. Subsequent microinjection of the selective 5-HT(1A) receptor antagonist WAY-100635 into RPa reversed the BAT thermolytic effects of 8-OH-DPAT, returning BAT SNA and BAT temperature to the elevated levels after leptin. In conclusion, activation of neurons in RPa, possibly BAT sympathetic premotor neurons, is essential for the increases in BAT SNA, BAT thermogenesis, and heart rate stimulated by intravenous administration of leptin. Neurons in RPa express 5-HT(1A) receptors whose activation leads to reversal of the BAT thermogenic and the cardiovascular responses to intravenous leptin, possibly through hyperpolarization of local sympathetic premotor neurons. These results contribute to our understanding of central neural substrates for the augmented energy expenditure stimulated by leptin.  相似文献   

11.
Ian Gibbins 《Organogenesis》2013,9(3):169-175
There is now abundant functional and anatomical evidence that autonomic motor pathways represent a highly organized output of the central nervous system. Simplistic notions of antagonistic all-or-none activation of sympathetic or parasympathetic pathways are clearly wrong. Sympathetic or parasympathetic pathways to specific target tissues generally can be activated tonically or phasically, depending on current physiological requirements. For example, at rest, many sympathetic pathways are tonically active, such as those limiting blood flow to the skin, inhibiting gastrointestinal tract motility and secretion, or allowing continence in the urinary bladder. Phasic parasympathetic activity can be seen in lacrimation, salivation or urination. Activity in autonomic motor pathways can be modulated by diverse sensory inputs, including the visual, auditory and vestibular systems, in addition to various functional populations of visceral afferents. Identifying the central pathways responsible for coordinated autonomic activity has made considerable progress, but much more needs to be done.  相似文献   

12.
A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.  相似文献   

13.
Macrophage stimulating protein (MSP) is a pleiotropic growth factor that signals via the Ron receptor tyrosine kinase. We report that Ron mRNA is expressed by NGF-dependent sensory and sympathetic neurons and that these neurons survive and grow with MSP at different stages of development. Whereas NGF-dependent sensory neurons become increasingly responsive to MSP with age, sympathetic neurons exhibit an early response to MSP that is lost by birth. MSP mRNA expression increases with age in sensory neuron targets and decreases in sympathetic targets. After the phase of naturally occurring neuronal death, significant numbers of NGF-dependent sensory neurons, but not sensory neurons, dependent on other neurotrophins, are lost in mice lacking a functional Ron receptor. These results show that MSP is a target-derived neurotrophic factor for subsets of sensory and sympathetic neurons at different times during their development.  相似文献   

14.
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.  相似文献   

15.
DOCA-salt treatment increases mean arterial pressure (MAP), while central infusion of benzamil attenuates this effect. The present study used c-Fos immunoreactivity to assess the role of benzamil-sensitive proteins in the brain on neural activity following chronic DOCA-salt treatment. Uninephrectomized rats were instrumented with telemetry transmitters for measurement of MAP and with an intracerebroventricular (ICV) cannula for benzamil administration. Groups included rats receiving DOCA-salt treatment alone, rats receiving DOCA-salt treatment with ICV benzamil, and appropriate controls. At study completion, MAP in vehicle-treated DOCA-salt rats reached 142 ± 4 mmHg. In contrast DOCA-salt rats receiving ICV benzamil had lower MAP (124 ± 3 mmHg). MAP in normotensive controls was 102 ± 3 mmHg. c-Fos immunoreactivity was quantified in the supraoptic nucleus (SON) and across subnuclei of the hypothalamic paraventricular nucleus (PVN), as well as other cardiovascular regulatory sites. Compared with vehicle-treated normotensive controls, c-Fos expression was increased in the SON and all subnuclei of the PVN, but not in other key autonomic nuclei, such as the rostroventrolateral medulla. Moreover, benzamil treatment decreased c-Fos immunoreactivity in the SON and in medial parvocellular and posterior magnocellular neurons of the PVN in DOCA-salt rats but not areas associated with regulation of sympathetic activity. Our results do not support the hypothesis that DOCA-salt increases neuronal activity (as indicated by c-Fos immunoreactivity) of other key regions that regulate sympathetic activity. These results suggest that ICV benzamil attenuates DOCA-salt hypertension by modulation of neuroendocrine-related PVN nuclei rather than inhibition of PVN sympathetic premotor neurons in the PVN and rostroventrolateral medulla.  相似文献   

16.
17.
Neurons in the caudal pressor area (CPA) are a source of tonic sympathoexcitation that is dependent on activation of cardiovascular sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM). In the present study, we sought to clarify the mechanism through which CPA neurons elicit increases in RVLM neuronal discharge, vasoconstrictor sympathetic tone, and arterial pressure. In urethan-chloralose-anesthetized, paralyzed, and artificially ventilated rats, bilateral disinhibition of CPA with bicuculline (Bic) after bilateral disinhibition of caudal ventrolateral medulla (CVLM) caused increases in splanchnic sympathetic nerve activity (+277% control) and arterial pressure (+54 mmHg). Inhibition of CVLM neurons with muscimol abolished the pressor response to activation of CPA neurons, suggesting that neurons within CVLM mediate the excitatory responses from CPA. Disinhibition of CVLM and CPA with Bic enhanced the sympathoexcitatory responses to stimulation of CPA with DL-homocysteic acid, which were blocked by microinjections of kynurenic acid into CVLM. We conclude that the pathway from CPA to RVLM involves an obligatory glutamatergic activation of sympathoexcitatory neurons in the vicinity of CVLM.  相似文献   

18.
We investigated the relationship between autonomic activity to the pancreas and insulin secretion in chronically catheterized dogs when food was shown, during eating, and during the early absorptive period. Pancreatic polypeptide (PP) output, pancreatic norepinephrine spillover (PNESO), and arterial epinephrine (Epi) were measured as indexes for parasympathetic and sympathetic nervous activity to the pancreas and for adrenal medullary activity, respectively. The relation between autonomic activity and insulin secretion was confirmed by autonomic blockade. Showing food to dogs initiated a transient increase in insulin secretion without changing PP output or PNESO. Epi did increase, suggesting beta(2)-adrenergic mediation, which was confirmed by beta-adrenoceptor blockade. Eating initiated a second transient insulin response, which was only totally abolished by combined muscarinic and beta-adrenoceptor blockade. During absorption, insulin increased to a plateau. PP output showed the same pattern, suggesting parasympathetic mediation. PNESO decreased by 50%, suggesting withdrawal of inhibitory sympathetic neural tone. We conclude that 1) the insulin response to showing food is mediated by the beta(2)-adrenergic effect of Epi, 2) the insulin response to eating is mediated both by parasympathetic muscarinic stimulation and by the beta(2)-adrenergic effect of Epi, and 3) the insulin response during early absorption is mediated by parasympathetic activation, with possible contribution of withdrawal of sympathetic neural tone.  相似文献   

19.
Cholinergic properties are induced in sympathetic neurons by several factors applied to entire neurons in culture. Evidence from work with the rat sweat gland model indicates that factors located in target tissues can induce cholinergic differentiation in vivo. We now report that when leukemia inhibitory factor (LIF), heart cell-conditioned medium (HCCM), or dermal fibroblast-conditioned medium (DFCM) is applied to only distal neurites in compartmented cultures of rat sympathetic neurons, the neurons exhibit an increase in specific choline acetyltransferase activity and a concomitant decrease in levels of tyrosine hydroxylase. LIF, HCCM, and DFCM also induce neurite fasciculation, thus suggesting an additional role of cholinergic switching factors in regulating axon-axon and/or axon-substrate adhesion. These results demonstrate that rat sympathetic neurons have the cellular machinery to respond to cholinergic differentiation cues located in peripheral targets, analogous to the response to nerve growth factor.  相似文献   

20.
The correct navigation of axons to their targets depends on guidance molecules in the extra‐cellular environment. Differential responsiveness to a particular guidance cue is largely an outcome of disparity in the expression of its receptors on the reacting axons. Here, we show that the differential responsiveness of sympathetic and sensory neurons to the transmembrane Semaphorin Sema6A is mainly determined by its co‐expression in the responding neurons. Both sympathetic and sensory neurons express the Sema6A receptor Plexin‐A4, but only sympathetic neurons respond to it. The expression of Sema6A counteracts this responsiveness and is detected only in sensory neurons. Remarkably, sensory neurons that lack Sema6A gain sensitivity to it in a Plexin‐A4‐dependent manner. Using heterologus systems, we show that the co‐expression of Sema6A and Plexin‐A4 hinders the binding of exogenous ligand, suggesting that a Sema6A–Plexin‐A4 cis interaction serves as an inhibitory mechanism. Finally, we provide evidence for differential modes of interaction in cis versus in trans. Thus, co‐expression of a transmembrane cue together with its receptor can serve as a guidance response modulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号