首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The developmental growth and associated changes in protein synthesis were measured (in vivo) in the combined small and large intestine from 18 days in utero to 105 weeks post partum. Similar post-natal (3-105 weeks) changes were also studied in the separated large and small intestine, and in the mucosal and muscularis externa + serosal layers of the small intestine. Although the protein and nucleic acid contents of the whole intestine increased throughout both pre- and post-natal life, the maximal (11%) intestinal contribution to whole-body growth occurred 3 weeks after birth; this value declined to only 2.5-3.5% at both extremes of the age range studied. Between the 18-day foetus and old age the fractional rate of protein synthesis decreased from 107 to 61% per day. This developmental decline (43%) was, however, much smaller than that found in most other body tissues over the same period. Similar developmental trends (between weaning and senility) were found in both the small and the large intestine when studied separately, the small intestine in all respects contributing proportionately more than the large intestine to both the combined intestinal and whole-body values. At each age the large intestine possessed significantly lower fractional rates of synthesis and associated ribosomal activities. For the most part, the fractional synthesis rates in the mucosa and serosa of the small intestine were very similar, with each declining slightly with increasing age. These developmental changes are discussed with respect to functional aspects within the gastrointestinal tract.  相似文献   

4.
We describe here a concise assay procedure for N-acetylglutamate (AGA) synthase (AGAS) and its application to an extensive study of tissue distribution of AGAS activity. Crude mitochondria from several tissues were incubated in a pair of assay mixtures with [14C]glutamate in the absence and presence of acetyl-CoA at 15 degrees C for 10 min. Anionic components including [14C]AGA were first isolated from glutamate by a cation exchanger column. In order to remove anionic contaminants such as succinate, the AGA was converted to glutamate enzymatically by aminoacylase, and then the glutamate was isolated by cation exchange chromatography and counted. Recoveries were corrected individually. The difference between the pair incubations was taken as the activity. An extensive survey of AGAS activity in rats showed that, although the liver expressed the highest activity, the small intestine, testis, lung and submaxillary gland also exhibited considerable activity. Sexual differences in activity were not found in the liver and small intestine. We also detected activity in the human small intestine for the first time. Optimization of incubation temperature and time and the presence of arginine in an assay mixture was essential and we demonstrated that the AGAS reaction with crude mitochondria as an enzyme source was unstable without arginine and at higher temperatures. This procedure appears suitable for studying the physiological and nutritional role of AGAS in non-hepatic tissues. In the accompanying paper we applied this procedure to study the ontogeny of AGAS in developing rat tissues.  相似文献   

5.
The present account spans the history of arginine regulation from its discovery in 1955 until the present. In 1957 I demonstrated that not only added arginine but also internally produced arginine represses enzyme formation and that the potential for enzyme synthesis is in excess of what is required for growth. In 1959 I located the regulatory gene argR encoding the arginine repressor. An unusual feature of this research was the finding that in E. coli B, in contrast to E. coli K12, arginine synthesis is permanently repressed, independent of arginine. This was due to a single amino acid difference between the two repressors. Recent studies showed that, in natural populations of E. coli, K12-type regulation is much more frequent than B-type regulation, and that E. coli B evolved from a strain with K12-type regulation. In competition experiments, E. coli K12 was found to be favored in the presence of arginine and E. coli B in its absence, showing that contrary to expectations permanently turned off regulation is favored over negative regulation in some environments.  相似文献   

6.
7.
The aims of this study were to quantify the change in resting membrane potential (RMP) across the thickness of the circular muscle layer in the mouse and human small intestine and to determine whether the gradient in RMP is dependent on the endogenous production of carbon monoxide (CO). Conventional sharp glass microelectrodes were used to record the RMPs of circular smooth muscle cells at different depths in the human small intestine and in wild-type, HO2-KO, and W/W(V) mutant mouse small intestine. In the wild-type mouse and human intestine, the RMP of circular smooth muscle cells near the myenteric plexus was -65.3 +/- 2 mV and -58.4 +/- 2 mV, respectively, and -60.1 +/- 2 mV and -49.1 +/- 1 mV, respectively, in circular smooth muscle cells at the submucosal border. Oxyhemoglobin (20 microM), a trapping agent for CO, and chromium mesoporphyrin IX, an inhibitor of heme oxygenase, abolished the transwall gradient. The RMP gradients in mouse and human small intestine were not altered by N(G)-nitro-l-arginine (200 microM). No transwall RMP gradient was found in HO2-KO mice and W/W(V) mutant mice. TTX (1 microM) and 1H-[1,2,4-]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM) had no effect on the RMP gradient. These data suggest that the gradient in RMP across the thickness of the circular muscle layer of mouse and human small intestine is CO dependent.  相似文献   

8.
9.
A system of enzymes is required for the transport of reducing equivalents from reduced nicotinamide adenine dinucleotide (NADH) generated in the cytosol into the mitochondria by the substrate cycles. These substrate cycle enzymes are necessary for the flow of pyruvate derived from glucose into the mitochondria for oxidative decarboxylation and for the efficient production of adenosine 5′-triphosphate (ATP) for the unique intestinal nutrient transport functions. The enzymes of the l-glycerol 3-phosphate and the l-malate/l-aspartate substrate cycles are present before birth and increase significantly at the 7-day postnatal period of development. The key enzymes monitored in the intestinal subcellular fractions were NAD-linked l-glycerol-3-phosphate dehydrogenase, flavoprotein-linked l-glycerol-3-phosphate dehydrogenase, l-malate dehydrogenase, and l-glutamate-oxaloacetate transaminase.  相似文献   

10.
11.
12.
Summary The distribution of argyrophile and argentaffin cells has been studied in the small intestine of five human adults. In proceeding cranio-caudally the characteristic feature of their distribution is the presence of eight to ten waves of rising and falling density. A progressive decrease in density of cells from duodenum to terminal ileum (described by previous workers) is not present.Re-examination of findings reported earlier in the small intestines of human foetuses shows that a predominant U shaped pattern of distribution is present in younger foetuses. This changes to the adult pattern by full term. The appearance of the adult pattern occurs earlier for argyrophile cells than for argentaffin cells.  相似文献   

13.
Phosphatidylcholine synthesis in the developing small intestine.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Phosphatidylcholine synthesis in the foetal, newborn and adult small intestine of rats was studied by determination of cytidine diphosphocholine-1,2-diacylglycerocholine phosphotransferase (cholinephosphotransferase) and acyl-CoA-1-acyl-sn-glycerol-3-phosphocholine acyltransferase (lysophosphatidylcholine acyltransferase) activities and the incorporation of [1-14C]oleic acid into phosphatidylcholine. 2. Cholinephosphotransferase activity was low in foetal jejunum and ileum, increased 3-4 fold in the ileum by 6 days of age and by 12 days in the jejunum. Jejunal activity remained constant throughout weaning; ileal activity gradually decreased to values 25% of that of the jejunum. 3. Lysophosphatidylcholine acyltransferase activity was high in foetal jejunum and ileum, decreased 70% immediately after birth in the jejunum and increased to adult values by 12 days of age. Ileal activity decreased by 20% after birth, but decreased more rapidly at weaning to 30% of the activity in jejunum. 4. Initial rates and steady-state incorporation of [1-14C]oleic acid into phosphatidylcholine by jejunal rings of 10 day-old rats exceeded that observed in jejunal rings from adult rats by 2-4-fold. 5. In the postnatal jejunum, neither cholinephosphotransferase and lysophosphatidylcholine acyltransferase activities nor oleic acid incorporation were stimulated by cortisone administration in vivo.  相似文献   

14.
To identify the forms of the plasma membrane calcium pump present in tissues that transport calcium, cDNA from human placenta and proximal small intestine was amplified by the polymerase chain reaction using a pair of mixed primers based on all the known human and rat plasma membrane calcium pump sequences. Clones were identified from the two human forms HPMCA1 and HPMCA4, but no new sequences were found in either tissue. RNA blots probed with HPMCA1 showed two bands in both tissues; probing with HPMCA4 gave a single, larger species. In placenta, HPMCA4 was the more abundant form and similar expression was found in full-term and second-trimester placentas. In contrast, in the small intestine, HPMCA1 was more abundant, suggesting that calcium absorption is not associated with any one specific isoform in calcium transporting cells.  相似文献   

15.
16.
1. The degradation rates and half-lives of hexokinase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase, pyruvate kinase, glucose 6-phosphate dehydrogenase, phosphoglycerate kinase and aldolase were calculated from measurements of the decline in activities of these enzymes in rat small intestine during starvation. 2. The half-lives of the enzymes are: hexokinase, 5.7h; 6-phosphogluconate dehydrogenase, 7.6h; glucose 6-phosphate dehydrogenase, 6.0h; pyruvate kinase, 8.9h; lactate dehydrogenase, 8.7h; phosphoglycerate kinase, 8.7h; aldolase, 5.1h. 3. The significance of the results is discussed with respect to the regulation of enzyme concentrations in response to changes in diet.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号