首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The CD4+ T cell lineages Th1, Th2, Th17, and Treg, are mammalian cell types that differentiate from the common precursor naive CD4+ T cell. While there is a wealth of experimental data regarding the molecular and cellular signals involved in the differentiation of CD4+ T cells in vitro, there is still no consensus regarding the structure of the network of interactions at the molecular and cellular levels controlling this differentiation process. In this work, a virtual culture of cells is constructed by interconnecting several instances of an updated version of the regulatory network controlling the differentiation process of CD4+ T cells in mice. The virtual culture is a multi-compartment model with an instance of a regulatory network inside each compartment, thus simulating a simplified version of a cell culture in a well-stirred reactor. The virtual culture is able to describe the stable molecular expression patterns described for fully differentiated CD4+ T cells in mice, as well as the differentiation process from a precursor to a given effector cell in response to specific molecular stimuli.  相似文献   

2.
3.

Background

It is difficult to experimentally infect volunteers with RV strains to which the subject demonstrates serological immunity. However, in RV challenges, viral clearance begins before de novo adaptive immune responses would develop. We speculated that adaptive immunity to RV reflects heterologous immunity by effector memory cells.

Methods

DCs were generated from monocytes using GM-CSF and IL-4 and RV39 loading accomplished with a dose of ∼350 TCID50/105 cells. RV-induced maturation was established as modulation of MHC class II, CD80, CD83, and CD86. Circulating RV targeting CD4 and CD8 T cells were investigated as induction of RV-specific proliferation (CFSE-dilution).

Results

Maturation of DC by RV was confirmed as upregulation of MHC Class II (83.3±5.0% to 87.8±4.1%), CD80 (39.4±7.2% to 47.6±7.7%) and CD86 (78.4±4.7% to 84.1±3.4%). Both CD4 and CD8 memory T cells were recognized in the circulation of healthy subjects.

Conclusions

RV drives DC maturation and results in their ability to present RV antigens to both T helper and cytotoxic lymphocytes. Both CD4 and CD8 cells capable of recognizing RV-associated antigens are present in the circulation of healthy subjects where they are presumably involved in immune surveillance and explain the rapid recruitment of an adaptive immune response during RV infection.  相似文献   

4.
Costimulation with the recombinant SA-4-1BBL agonist of 4-1BB receptor on conventional CD4+ T cells (Tconvs) overcomes the suppression mediated by naturally occurring CD4+CD25+FoxP3+ T regulatory cells (Tregs). The mechanistic basis of this observation has remained largely unknown. Herein we show that Tconvs, but not Tregs, are the direct target of SA-4-1BBL-mediated evasion of Treg suppression. IL-2 produced by Tconvs in response to 4-1BB signaling is both necessary and sufficient for overcoming Treg suppression. Supernatant from Tconvs stimulated with SA-4-1BBL contains high levels of IL-2 and overcomes Treg suppression in ex vivo Tconv:Treg cocultures. Removal of IL-2 from such supernatant restores Treg suppression and repletion of Tconv:Treg cocultures with exogenous recombinant IL-2 overcomes suppression. This study establishes 4-1BB signaling as a key circuit that regulates physical and functional equilibrium between Tregs and Tconvs with important implications for immunotherapy for indications where a fine balance between Tregs and Teffs plays a decisive role.  相似文献   

5.
6.
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.  相似文献   

7.
Vpr is a conserved primate lentiviral protein that promotes infection of T lymphocytes in vivo by an unknown mechanism. Here we demonstrate that Vpr and its cellular co-factor, DCAF1, are necessary for efficient cell-to-cell spread of HIV-1 from macrophages to CD4+ T lymphocytes when there is inadequate cell-free virus to support direct T lymphocyte infection. Remarkably, Vpr functioned to counteract a macrophage-specific intrinsic antiviral pathway that targeted Env-containing virions to LAMP1+ lysosomal compartments. This restriction of Env also impaired virological synapses formed through interactions between HIV-1 Env on infected macrophages and CD4 on T lymphocytes. Treatment of infected macrophages with exogenous interferon-alpha induced virion degradation and blocked synapse formation, overcoming the effects of Vpr. These results provide a mechanism that helps explain the in vivo requirement for Vpr and suggests that a macrophage-dependent stage of HIV-1 infection drives the evolutionary conservation of Vpr.  相似文献   

8.
Human CMV establishes lifelong persistence after primary infection. Chronic CMV infection is associated with intermittent viral reactivation inducing high frequencies of CD4(+) T lymphocytes with potent antiviral and helper properties. Primary CMV infection is characterized by an intense viral replication lasting for several months. The impact of this prolonged exposure to high Ag loads on the functionality of CD4(+) T cells remains incompletely understood. In pregnant women with primary CMV infection, we observed that CMV-specific CD4(+) T lymphocytes had a decreased capacity to proliferate and to produce IL-2. A very large proportion of CMV-specific CD4(+) T cells had downregulated the expression of CD28, a costimulatory molecule centrally involved in the production of IL-2. Unexpectedly, both CD28(-) and CD28(+)CD4(+) T cells produced low levels of IL-2. This defective production of IL-2 was part of a larger downregulation of cytokine production. Indeed, CMV-specific CD4(+) T cells produced lower amounts of IFN-γ and TNF-α and showed lower functional avidity during primary as compared with chronic infection. Increased programmed death-1 expression was observed in CD28(+) CMV-specific CD4(+) T cells, and programmed death-1 inhibition increased proliferative responses. These results indicate that primary CMV infection is associated with the exhaustion of CMV-specific CD4(+) T cells displaying low functional avidity for viral Ags.  相似文献   

9.
10.
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.  相似文献   

11.
DNA甲基化、染色质重塑等表观遗传作用对CD4^ T细胞向Th1和Th2的分化有重要的影响,现对Th1细胞表达IFN-γ以及Th2细胞表达IL-4/IL-13在基因转录水平的调节作用给予概述,重点阐述相关转录因子、酶以及蛋白质复合物所发挥的表观遗传调节作用的可能机制。  相似文献   

12.

Objective

Currently 50% of ART eligible patients are not yet receiving life-saving antiretroviral therapy (ART). Financial constraints do not allow most developing countries to adopt a universal test and offer ART strategy. Decentralizing CD4+ T cell testing may, therefore, provide greater access to testing, ART, and better patient management. We evaluated the technical performance of a new point-of-care CD4+ T cell technology, the BD FACSPresto, in a field methods comparison study.

Methods

264 HIV-positive patients were consecutively enrolled and included in the study. The BD FACSPresto POC CD4+ T cell technology was placed in two rural health care facilities and operated by health care facility staff. We compared paired finger-prick and venous samples using the BD FACSPresto and several existing reference technologies, respectively.

Results

The BD FACSPresto had a mean bias of 67.29 cells/ul and an r2 of 0.9203 compared to the BD FACSCalibur. At ART eligibility thresholds of 350 and 500 cells/ul, the sensitivity to define treatment eligibility were 81.5% and 77.2% and the specificities were 98.9% and 100%, respectively. Similar results were observed when the BD FACSPresto was compared to the BD FACSCount and Alere Pima. The coefficient of variation (CV) was less than 7% for both the BD FACSCalibur and BD FACSPresto. CD4+ T cell testing by nurses using the BD FACSPresto at rural health care facilities showed high technical similarity to test results generated by laboratory technicians using the BD FACSPresto in a high functioning laboratory.

Conclusions

The BD FACSPresto performed favorably in the laboratory setting compared to the conventional reference standard technologies; however, the lower sensitivities indicated that up to 20% of patients tested in the field in need of treatment would be missed. The BD FACSPresto is a technology that can allow for greater decentralization and wider access to CD4+ T cell testing and ART.  相似文献   

13.
Immune responses and the components of protective immunity following norovirus infection in humans are poorly understood. Although antibody responses following norovirus infection have been partially characterized, T cell responses in humans remain largely undefined. In contrast, T cells have been shown to be essential for viral clearance of mouse norovirus (MNV) infection. In this paper, we demonstrate that CD4+ T cells secrete gamma interferon (IFN-γ) in response to stimulation with MNV virus-like particles (VLPs) after MNV infection, supporting earlier reports for norovirus-infected mice and humans. Utilizing this model, we immunized mice with alphavirus vectors (Venezuelan equine encephalitis [VEE] virus replicon particles [VRPs]) expressing Norwalk virus (NV) or Farmington Hills virus (FH) virus-like particles to evaluate T cell epitopes shared between human norovirus strains. Stimulation of splenocytes from norovirus VRP-immunized mice with overlapping peptides from complete libraries of the NV or FH capsid proteins revealed specific amino acid sequences containing T cell epitopes that were conserved within genoclusters and genogroups. Immunization with heterologous norovirus VRPs resulted in specific cross-reactive IFN-γ secretion profiles following stimulation with NV and FH peptides in the mouse. Identification of unique strain-specific and cross-reactive epitopes may provide insight into homologous and heterologous T cell-mediated norovirus immunity and provide a platform for the study of norovirus-induced cellular immunity in humans.Norovirus infection is characterized by the induction of both humoral and cellular immune responses. Humoral immunity in humans following norovirus infection has been described in detail for a limited number of norovirus strains (8, 10, 12, 17, 18, 29). Humans mount specific antibody responses to the infecting strain, which bear complex patterns of unique and cross-reactive, yet undefined, epitopes to other strains within or across genogroups (23, 29). Short-term immunity following homologous norovirus challenge has been documented, but long-term immunity remains controversial (16, 25). Furthermore, no studies to date have demonstrated cross-protection following heterologous norovirus challenge (30). While some susceptible individuals can become reinfected with multiple norovirus strains throughout their lifetimes, the mechanism of short-term protection and the impact of previous exposures on susceptibility to reinfection remain largely unknown.The role of T cells in controlling norovirus infection also remains largely undefined. A single comprehensive study detailing immune responses in genogroup II Snow Mountain virus-infected individuals revealed that CD4+ TH1 cells can be stimulated by virus-like particles (VLPs) to secrete gamma interferon (IFN-γ) and interleukin-2 (IL-2) (17). Furthermore, heterologous stimulation from VLPs derived from different norovirus strains within but not across genogroups also induced significant IFN-γ secretion compared to that for uninfected individuals (17). A follow-up study with genogroup I Norwalk virus (NV)-infected individuals confirmed high T cell cross-reactivity within a genogroup as measured by IFN-γ secretion (18). Further, vaccination of humans with VLPs also results in short-term IFN-γ production (27).Because norovirus infection studies in humans are confounded by previous exposure histories, the use of inbred mice maintained in pathogen-free environments allows for the study of norovirus immune responses in a naive background. While mice cannot be infected with human norovirus strains, VLP vaccines expressing norovirus structural proteins induce immune responses that can be measured and studied (14, 20). Mice immunized orally or intranasally with VLP vaccines in the presence of adjuvant similarly induced CD4+ IFN-γ responses in Peyer''s patches and spleen (22, 26). Induction of CD8+ T cells and secretion of the TH2 cytokine IL-4 were separately noted; however, it is unclear if these responses were influenced by VLPs or the coadministered vaccine adjuvants (22, 26). Further, coadministration of alphavirus adjuvant particles with multivalent norovirus VLP vaccine, including or excluding mouse norovirus (MNV) VLPs, resulted in significantly reduced MNV loads following MNV challenge (21). Multivalent VLP vaccines induced robust receptor-blocking antibody responses to heterologous human strains not included in the vaccine composition (20, 21). Moreover, natural infection with MNV supports a role for T cell immunity in viral clearance and protection (5).To advance our understanding of the scope of the cellular immune response within and between strains, we immunized mice with Venezuelan equine encephalitis (VEE) virus replicon particles (VRPs) expressing norovirus VLPs derived from the Norwalk virus (GI.1-1968) (1) or Farmington Hills virus (FH) (GII.4-2002) (19) strains and analyzed splenocytes for cytokine secretion, epitope identification, and heterologous stimulation. The data presented here indicate that the major capsid proteins of genogroup I and II noroviruses contain robust T cell epitopes that cross-react with related strains in the mouse yet also occur within regions of known variation, especially among the GII.4 noroviruses.  相似文献   

14.
GRAIL (gene related to anergy in lymphocytes), is an E3 ubiquitin ligase with increased expression in anergic CD4+ T cells. The expression of GRAIL has been shown to be both necessary and sufficient for the induction of T cell (T) anergy. To date, several subsets of anergic T cells have demonstrated altered interactions with antigen-presenting cells (APC) and perturbed TCR-mediated signaling. The role of GRAIL in mediating these aspects of T cell anergy remains unclear. We used flow cytometry and confocal microscopy to examine T/APC interactions in GRAIL-expressing T cells. Increased GRAIL expression resulted in reduced T/APC conjugation efficiency as assessed by flow cytometry. Examination of single T/APC conjugates by confocal microscopy revealed altered polarization of polymerized actin and LFA-1 to the T/APC interface. When GRAIL expression was knocked down, actin polarization to the T/APC interface was restored, demonstrating that GRAIL is necessary for alteration of actin cytoskeletal rearrangement under anergizing conditions. Interestingly, proximal TCR signaling including calcium flux and phosphorylation of Vav were not disrupted by expression of GRAIL in CD4+ T cells. In contrast, interrogation of distal signaling events demonstrated significantly decreased JNK phosphorylation in GRAIL-expressing T cells. In sum, GRAIL expression in CD4+ T cells mediates alterations in the actin cytoskeleton during T/APC interactions. Moreover, in this model, our data dissociates proximal T cell signaling events from functional unresponsiveness. These data demonstrate a novel role for GRAIL in modulating T/APC interactions and provide further insight into the cell biology of anergic T cells.  相似文献   

15.

Background

Lymphopenia results in the proliferation and differentiation of naïve T cells into memory-like cells in the apparent absence of antigenic stimulation. This response, at least in part due to a greater availability of cytokines, is thought to promote anti-self responses. Although potentially autoreactive memory-like CD8+ T cells generated in a lymphopenic environment are subject to the mechanisms of peripheral tolerance, they can induce autoimmunity in the presence of antigen-specific memory-like CD4+ T helper cells.

Methodology/Principal Findings

Here, we studied the mechanisms underlying CD4 help under lymphopenic conditions in transgenic mice expressing a model antigen in the beta cells of the pancreas. Surprisingly, we found that the self-reactivity mediated by the cooperation of memory-like CD8+ and CD4+ T cells was not abrogated by CD40L blockade. In contrast, treatment with anti-IL-2 antibodies inhibited the onset of autoimmunity. IL-2 neutralization prevented the CD4-mediated differentiation of memory-like CD8+ T cells into pathogenic effectors in response to self-antigen cross-presentation. Furthermore, in the absence of helper cells, induction of IL-2 signaling by an IL-2 immune complex was sufficient to promote memory-like CD8+ T cell self-reactivity.

Conclusions/Significance

IL-2 mediates the cooperation of memory-like CD4+ and CD8+ T cells in the breakdown of cross-tolerance, resulting in effector cytotoxic T lymphocyte differentiation and the induction of autoimmune disease.  相似文献   

16.
Previous studies have shown that TGF-β acts cooperatively with IL-6 to elicit a high frequency of IL-17-secreting CD4(+) T cells (termed Th17) and an elevated CD8(+)IL-17(+) T cell population (termed Tc17). These CD8(+) cells fail to behave like most cytotoxic T lymphocytes that express IFN-γ and granzyme B, but they exhibit a noncytotoxic phenotype. Although a significant increase in the number of these Tc17 cells was found in tumors, their role and interaction with other cell types remain unclear. In this study, we demonstrate that the presence of CD4(+)CD25(-) T cells, but not the CD4(+)CD25(+) (regulatory T [Treg]) cell population, significantly reduced the elicitation of Tc17 cells, possibly as a result of the induction of apoptotic signals. Importantly, these signals may be derived from soluble mediators, and the addition of anti-IL-2 restored the reduction of Tc17 cells in the presence of CD4(+)CD25(-) T cells. Finally, the elicited Tc17 and Treg cells exhibited a close association in patients with head and neck cancer, indicating that the surrounding Treg cells might maintain the survival of the Tc17 cells. Taken together, these results reveal an intriguing mechanism in which Tc17 cells are controlled by a finely tuned collaboration between the different types of CD4(+) T cells in distinct tumor microenvironments.  相似文献   

17.
18.
19.
Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation.  相似文献   

20.
The progressive loss of CD4+ T cell population is the hallmark of HIV-1 infection but the mechanism underlying the slow T cell decline remains unclear. Some recent studies suggested that pyroptosis, a form of programmed cell death triggered during abortive HIV infection, is associated with the release of inflammatory cytokines, which can attract more CD4+ T cells to be infected. In this paper, we developed mathematical models to study whether this mechanism can explain the time scale of CD4+ T cell decline during HIV infection. Simulations of the models showed that cytokine induced T cell movement can explain the very slow decline of CD4+ T cells within untreated patients. The long-term CD4+ T cell dynamics predicted by the models were shown to be consistent with available data from patients in Rio de Janeiro, Brazil. Highly active antiretroviral therapy has the potential to restore the CD4+ T cell population but CD4+ response depends on the effectiveness of the therapy, when the therapy is initiated, and whether there are drug sanctuary sites. The model also showed that chronic inflammation induced by pyroptosis may facilitate persistence of the HIV latent reservoir by promoting homeostatic proliferation of memory CD4+ cells. These results improve our understanding of the long-term T cell dynamics in HIV-1 infection, and support that new treatment strategies, such as the use of caspase-1 inhibitors that inhibit pyroptosis, may maintain the CD4+ T cell population and reduce the latent reservoir size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号