首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biorheology》1996,33(3):209-229
Elevated shear stress levels in pathologically stenosed vessels induce platelet activation and aggregation, and may play a role in the pathogenesis of arterial disease. Increased plasma catecholamine concentrations have also been implicated in the onset of acute coronary ischemic syndromes. This study was designed to examine the synergistic interaction of shear stress and epinephrine in the activation of platelets. Platelets (in PRP) sheared at 60 dyn/cm2 showed little or no aggregation unless pretreated with epinephrine. Pretreatment with 250 nM epinephrine followed by shear at 60 dyn/cm2 induced >60% platelet aggregation. The specific α2-adrenergic receptor antagonist yohimbine inhibited the synergistic aggregation, as did the ADP scavenging system phosphocreatine/creatine phosphokinase, indicating a three-way synergism with ADP. Chemical or monoclonal antibody blockade of von Willebrand factor (vWF) interactions with either platelet glycoprotein (Gp) Ib or Gp IIb/IIIa completely inhibited platelet aggregation induced by activating levels of shear stress alone. However, the combination of epinephrine and shear stress induced platelet aggregation that was blocked by 10E5, a monoclonal antibody that inhibits vWF binding to Gp IIb/IIIa, but not by aurin tricarboxylic acid or the monoclonal antibody 6D1, both of which inhibit vWF binding to Gp Ib. Synergistic platelet aggregation in response to epinephrine and shear stress was observed in washed platelets, platelet-rich plasma and whole blood in vitro, and also ex vivo following exercise to elevate endogenous levels of catecholamines. These results indicate that epinephrine synergizes with shear stress to induce platelet aggregation. This synergistic response requires functional Gp IIb/IIIa complexes, but is at least partially independent of vWF-Gp Ib interactions.  相似文献   

2.
《Biorheology》1995,32(1):73-93
The objective of this work was to evaluate quantitatively the effects of flow on platelet reactions using a flow cytometric technique. Whole blood was exposed to well defined, laminar shear stress in a cone-and-plate viscometer in the absence of added agonists. Blood specimens were fixed with formaldehyde and incubated with two monoclonal antibodies. Antibody 6D1, specific for platelet membrane glycoprotein Ib (GPIb), was used to identify and enumerate platelets and platelet aggregates on the basis of their characteristic forward scatter and 6D1-FITC fluorescence profiles. Anti-CD62 antibody, specific for the granule membrane protein-140 (GMP-140), was used to measure platelet activation. Results showed platelet aggregation increasing with increasing shear stress with marked increase in this response for a pathophysiological stress level of 140 dyn/cm2 and higher. This stress level also was the apparent threshold for formation of large platelet aggregates (“large” refers to particles larger than 10 μm in equivalent sphere diameter). These platelet responses to shear stress were insensitive to aspirin, but strongly inhibited by agents that elevate platelet cyclic adenosine monophosphate (cAMP) levels. Moreover, pre-incubation of whole blood with monoclonal antibodies that inhibit von Willebrand factor binding to GPIb or von Willebrand factor and fibrinogen binding to GPIIb/IIIa inhibited platelet aggregation. Aggregation induced by shear at 37° C was less in extent than at 23° C. At physiological shear stresses, whole blood was more susceptible to shear-induced platelet aggregation than platelet-rich plasma. This study reaffirms that flow cytometric methods have several important advantages in studies of shear effects on platelets, and extends the methodology to whole blood unaltered by cell separation methods.  相似文献   

3.
Glycoprotein (GP) Ib, an adhesion receptor expressed on both platelets and endothelial cells, mediates the binding of von Willebrand factor (vWF). Platelet GPIb plays an important role in platelet adhesion and activation, whereas the interaction of vWF and endothelial GPIb is not fully understood. We report here that agkistin, a snake venom protein, selectively blocks the interaction of vWF with human endothelial GPIb and inhibits angiogenesis in vivo. Agkistin specifically blocked human umbilical vein endothelial cell (HUVEC) adhesion to immobilized vWF in a concentration-dependent manner. Fluorescein isothiocyanate (FITC)-conjugated agkistin bound to HUVECs in a saturable manner. AP1, a monoclonal antibody (mAb) raised against GPIb, specifically inhibited the binding of FITC-conjugated agkistin to HUVECs in a dose-dependent manner, but other anti-integrin mAbs raised against alpha(v)beta(3), alpha(2)beta(1), and alpha(5)beta(1) did not affect this binding reaction. However, neither agkistin (2 microgram/ml) nor AP1 (40 microgram/ml) apparently reduced HUVEC viability. Both agkistin and AP1 exhibited a profound anti-angiogenic effect in vivo when assayed by using the 10-day-old embryo chick chorioallantoic membrane model. These results suggest endothelial GPIb plays a role in spontaneous angiogenesis in vivo, and the anti-angiogenic effect of agkistin may be because of disruption of the interaction of endogenous vWF with endothelial GPIb.  相似文献   

4.
A full-length cDNA for vWF has been cloned from a human lung cDNA library and a fragment of this cDNA has been modified to allow its expression in E. coli. This fragment, which corresponds to Val 449-Asn 730 of vWF and includes the GPIb-binding domain and binding sites for collagen and heparin, was subcloned into an expression vector containing an inducible lambda PL promoter. On induction, the expressed recombinant vWF subfragment migrated with a mol wt of around 38,000 after SDS-PAGE. It was identified as a vWF fragment by Western blotting using either a polyclonal or a monoclonal antibody which inhibits the binding of vWF to GPIb. Following solubilization in urea, the bacterial extract inhibited ristocetin-induced platelet aggregation and bound to ristocetin-treated platelets, to collagen and to heparin.  相似文献   

5.
von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways.  相似文献   

6.
M Peng  W Lu  E P Kirby 《Biochemistry》1991,30(49):11529-11536
A new protein, called alboaggregin-B (AL-B), has been isolated from Trimeresurus albolabris venom by ion-exchange chromatography. It agglutinated platelets without the need for Ca2+ or any other cofactor. The purified protein showed an apparent molecular mass on SDS-PAGE and gel filtration of about 23 kDa under nonreducing conditions. Ristocetin did not alter the binding of AL-B to platelets or affect AL-B-induced platelet agglutination. Agglutinating activity was not dependent on either proteolytic or lectin-like activity in AL-B. Binding analysis showed that AL-B bound to platelets with high affinity (Kd = 13.6 +/- 9.3 nM) at approximately 30,800 +/- 14,300 binding sites per platelet. AL-B inhibited the binding of labeled bovine von Willebrand factor (vWF) to platelets. Monoclonal antibodies against the 45-kDa N-terminal domain of platelet glycoprotein Ib inhibited the binding both of AL-B and of bovine vWF to platelets, and also inhibited platelet agglutination induced by AL-B and bovine vWF. Specific removal of the N-terminal domain of GPIb by treatment of the platelets with elastase or Serratia marcescens protease reduced the binding of labeled AL-B and bovine vWF to platelets and blocked platelet agglutination caused by both agonists. Monoclonal antibodies to glycoprotein IIb/IIIa, to bovine vWF, and to bovine serum albumin did not show any effect on the binding of AL-B to platelets. Our results indicate that the binding domain for AL-B on platelet GPIb is close to or identical with the one for vWF. This new protein may be a very useful tool for studying the interaction between platelets and vWF.  相似文献   

7.
The ability of different ligands of glycoprotein (GP) IIb-IIIa (alphaIIb/beta3-integrin) to support platelet aggregation stimulated by activating anti-GP IIb-IIIa monoclonal antibody (monoAB) CRC54 has been investigated. Antibody CRC54 stimulated aggregation of washed platelets not only in the presence of fibrinogen, the main GP IIb-IIIa ligand, but also in the presence of von Willebrand factor (vWF). Unlike these ligands, fibronectin failed to support CRC54-induced aggregation. Fibrinogen and vWF dependent platelet aggregation was completely suppressed by GP IIb-IIIa antagonists--preparations Monafram (F(ab')2 fragments of monoAB that blocked GP IIb-IIIa receptor activity) and aggrastat (RGD-like peptidomimetic). However, aggregation stimulated in the presence of vWF was also completely inhibited by monoAB AK2 directed against GP Ib and capable of blocking its binding with vWF. CRC54-induced aggregation of platelets from patient with GP Ib deficiency in the presence of vWF was significantly lower than aggregation of platelets from normal donors and was not inhibited by anti-GP Ib antibody but still blocked by GP IIb-IIIa antagonist Monafram. Monafram also suppressed CRC54-stimulated platelet adhesion to plastic-adsorbed fibrinogen, vWF, and fibronectin. Unlike CRC54-induced platelet aggregation supported by fluid phase vWF, CRC54-induced adhesion to adsorbed vWF was not affected by anti-GP Ib antibody. Aggregation induced by CRC54 in the presence of fibrinogen and vWF was only partially suppressed by prostaglandin E1, an inhibitor of platelet activation, and was associated with serotonin release from platelet granules only when Ca2+ concentration was decreased from 1 mM (physiological level) to 0.1 mM. The data indicate that vWF supports CRC54-induced platelet aggregation via interaction with two receptors--GP IIb-IIIa and GP Ib. Aggregation induced by CRC54 in the presence of vWF or fibrinogen is only partially dependent on platelet activation and is accompanied with granule secretion only at low Ca2+ concentrations.  相似文献   

8.
von Willebrand factor (vWF) mediates platelet adhesion and thrombus formation via its interaction with the platelet receptor glycoprotein (GP)Ibα. We have analyzed two A1A2A3 tri-domain proteins to demonstrate that the amino acid sequence, Gln(1238)-Glu(1260), in the N-terminal flanking region of the A1 domain, together with the association between the A domains, modulates vWF-GPIbα binding and platelet activation under shear stress. Using circular dichroism spectroscopy and differential scanning calorimetry, we have described that sequence Gln(1238)-Glu(1260) stabilizes the structural conformation of the A1A2A3 tri-domain complex. The structural stabilization imparted by this particular region inhibits the binding capacity of the tri-domain protein for GPIbα. Deletion of this region causes a conformational change in the A1 domain that increases binding to GPIbα. Only the truncated protein was capable of effectively blocking ristocetin-induced platelet agglutination. To determine the capacity of activating platelets via the interaction with GPIbα, whole blood was incubated with the N-terminal region truncated or intact tri-A domain protein prior to perfusion over a fibrin(ogen)-coated surface. At a high shear rate of 1,500 s(-1), platelets from blood containing the truncated protein rapidly bound, covering >90% of the fibrin(ogen) surface area, whereas the intact tri-A domain protein induced platelets to bind <10%. The results obtained in this study ascertain the relevant role of the structural association between the N-terminal flanking region of the A1 domain (amino acids Gln(1238)-Glu(1260)) and the A1A2A3 domain complex in preventing vWF to bind spontaneously to GPIbα in solution under high shear forces.  相似文献   

9.
Aggretin purified from Calloselasma rhodostoma venom was previously identified as alpha(2)beta(1) agonist in triggering platelet aggregation, and exists as a heterodimer sharing a great homologous sequence to GPIb binding proteins. We show here that binding to GPIb is also required in aggregation-inducing activity of aggretin. A2-IIE10, an anti-integrin alpha(2) monoclonal antibody, delayed platelet aggregation while agkistin, a GPIb antagonist, only slightly inhibited platelet aggregation caused by aggretin. However, the aggretin-induced platelet aggregation was completely abolished by a combination of A2-IIE10 and agkistin. Either A2-IIE10 or agkistin significantly inhibited the binding of FITC-aggretin toward fixed platelets. Aggretin and collagen induced a similar signal transduction in platelets involving a time-dependent tyrosine phosphorylation of p125(FAK) and PLCgamma2, but aggretin caused a much-delayed tyrosine-phosphorylation of PI 3-kinase compared with collagen. LY294002, a PI 3-kinase inhibitor, showed a significant inhibitory effect on collagen, but not aggretin-stimulated platelet aggregation. These findings indicate aggretin induces platelet aggregation via binding of alpha(2)beta(1) and GPIb, causing phosphorylation of p125(FAK) and PLCgamma2 leading to platelet activation without the involvement of PI 3-kinase activation.  相似文献   

10.
The ability of platelets to tether to and translocate on injured vascular endothelium relies on the interaction between the platelet glycoprotein receptor Ib alpha (GPIb(alpha)) and the A1 domain of von Willebrand factor (vWF-A1). To date, limited information exists on the kinetics that govern platelet interactions with vWF in hemodynamic flow. We now report that the GPIb(alpha)-vWF-A1 tether bond displays similar kinetic attributes as the selectins including: 1) the requirement for a critical level of hydrodynamic flow to initiate adhesion, 2) short-lived tethering events at sites of vascular injury in vivo, and 3) a fast intrinsic dissociation rate constant, k(0)(off) (3.45 +/- 0.37 s(-1)). Values for k(off), as determined by pause time analysis of transient capture/release events, were also found to vary exponentially (4.2 +/- 0.8 s(-1) to 7.3 +/- 0.4 s(-1)) as a function of the force applied to the bond (from 36 to 217 pN). The biological importance of rapid bond dissociation in platelet adhesion is demonstrated by kinetic characterization of the A1 domain mutation, I546V that is associated with type 2B von Willebrand disease (vWD), a bleeding disorder that is due to the spontaneous binding of plasma vWF to circulating platelets. This mutation resulted in a loss of the shear threshold phenomenon, a approximately sixfold reduction in k(off), but no significant alteration in the ability of the tether bond to resist shear-induced forces. Thus, flow dependent adhesion and rapid and force-dependent kinetic properties are the predominant features of the GPIb(alpha)-vWF-A1 tether bond that in part may explain the preferential binding of platelets to vWF at sites of vascular injury, the lack of spontaneous platelet aggregation in circulating blood, and a mechanism to limit thrombus formation.  相似文献   

11.
Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.  相似文献   

12.
Walsh MT  Dinan TG  Condren RM  Ryan M  Kenny D 《Life sciences》2002,70(26):222-3165
There is a significant association between cardiovascular disease and depression. Previous studies have documented changes in platelets in depression. It is unknown if depression causes functional changes in platelet surface receptors. Therefore, we analyzed (1) the surface expression of glycoprotein (GP)Ib and the integrin receptor IIbβIIIa, receptors involved in platelet adhesion and aggregation, (2) CD62 (P-selectin) and CD63, integral granule proteins translocated during platelet activation, (3) platelet aggregation in response to ADP and (4) plasma levels of glycocalicin and von Willebrand factor (vWF), in depressed patients compared to healthy volunteers. Fifteen depressed patients with a Hamilton depression score of at least 22 and fifteen control subjects were studied. Platelets were assessed for surface expression levels of GPIb, IIbβIIIa, CD62 and CD63 by flow cytometry. Genomic DNA was isolated to investigate a recently described polymorphism in the 5’ untranslated region of the GPIb gene. The number of GPIb receptors was significantly increased on the surface of platelets from patients with depression compared to control subjects. Surface expression of CD62 was also significantly increased in the depressed patients versus control subjects. There was no significant difference between depressed patients and healthy volunteers in the surface expression of IIbβIIIa or CD63, or in glycocalicin or vWF plasma concentration, or ADP-induced aggregation. There was no difference in allele frequency of the Kozak region polymorphism of the GPIb gene, which can affect GPIb expression. The results of this study demonstrate that the number of GPIb receptors on platelets are increased in depression and suggest a novel risk factor for thrombosis in patients with depression.  相似文献   

13.
The interaction of fibrinogen with membrane glycoprotein GPIIb-IIIa regulates platelet aggregation. This ligand:integrin receptor interaction elicits conformational changes in GPIIb-IIIa as evidenced by the induction of ligand-induced binding sites which are recognized by antibodies that react selectively with the occupied receptor. The dynamic nature of these conformational changes is now demonstrated by the identification and characterization of a receptor-induced binding site (RIBS) elicited in fibrinogen bound to GPIIb-IIIa. A monoclonal antibody to fibrinogen, anti-Fg-RIBS-I, failed to bind to nonstimulated platelets in the presence or absence of fibrinogen. However, when platelets were stimulated with an agonist, the antibody reacted with platelet-bound fibrinogen even in the presence of a marked excess of unbound fibrinogen. A key element of the RIBS epitope has been precisely localized to residues 373-385 of the gamma chain of fibrinogen. Conformational elements also are important in defining the epitope. Fab fragments of the antibody inhibited platelet aggregation. As these fragments also inhibited fibrin polymerization, a commonality between these two diverse functions of fibrinogen in thrombus formation is indicated. In general, antibodies to RIBS and ligand-induced binding site provide unique probes for characterizing ligand:receptor interactions.  相似文献   

14.
The binding of 35S-labeled recombinant human Factor VIII to activated human platelets was studied in the presence and absence of exogenous plasma von Willebrand factor. In the absence of added von Willebrand Factor, platelets bound 210 molecules of Factor VIII/platelet when the unbound Factor VIII concentration was 2.0 nM (Kd = 2.9 nM). As the von Willebrand factor concentration was increased, the number of Factor VIII molecules bound/platelet decreased to 10 molecules of Factor VIII bound/platelet at 24 micrograms/ml of added vWF. Addition of an anti-vWF monoclonal antibody that inhibits the vWF-Factor VIII interaction attenuated the ability of vWF to inhibit binding of Factor VIII to platelets. In contrast, addition of a control anti-vWF antibody that does not block the vWF-Factor VIII interaction did not affect the ability of vWF to inhibit Factor VIII binding to platelets. From the vWF concentration dependence of inhibition of Factor VIII-platelet binding, a dissociation constant for the Factor VIII-vWF interaction was calculated (Kd = 0.44 nM). To further elucidate the role that vWF may play in preventing the interaction of Factor VIII with platelets, the platelet binding properties of a Factor VIII deletion mutant (90-73) which lacks the primary vWF-binding site was studied. The binding of this mutant was unaffected by added exogenous vWF. These observations demonstrate that Factor VIII can interact with platelets in a manner independent of vWF but that excess vWF in plasma can effectively compete with platelets for the binding of Factor VIII. In addition, since cleavage of Factor VIII by thrombin separates a vWF-binding domain from Factor VIIIa, we propose that activation of Factor VIII by thrombin may elicit release of activated Factor VIII from vWF and thereby make it fully available for platelet binding.  相似文献   

15.
The kinetics of aggregation of human platelets activated by alpha-thrombin (0.17-0.35 nM) and the hexapeptide SFLLRN (2-10 microM) was studied in plasma-free washed cell suspensions undergoing Poiseuille flow at 37 degrees C using a previously described double infusion technique. Platelet-rich Tyrodes, prepared from venous blood by multiple centrifugation, and agonist were rapidly mixed in a small chamber and the suspension flowed through various lengths of 1.19 and 0.76 mm diameter polyethylene tubing at mean transit times t from 0.2 to 43 s and mean tube shear rates = 41.9, 335, and 1335 s-1. Effluent was collected in 0.5% glutaraldehyde and single cells and aggregates in the volume range 1-10(5) micron 3 counted and sized using an aperture impedance counter. The rate and extent of aggregation with thrombin increased with increasing [thrombin] and , and although characterized by a small initial lag time, exhibited a very rapid growth of aggregates to macroscopic size, > 10(5) micron 3, at low and moderate shear rates. With SFLLRN, the initial lag times were appreciably longer, but subsequently aggregates also rapidly grew to macroscopic size. We hypothesize that the initial lag time is due to the time required for sufficient secretion and surface organization of ligands such as vWF (known to be released by the platelet) to occur, in order for cross-bridging of the GPIIb-IIIa receptors on adjacent platelets to take place. It appears that thrombin, which, at the low concentrations used, primarily activates the platelet via binding to the GPIb alpha receptor, can more rapidly facilitate secretion of the ligand than SFLLRN, which activates the cell via binding to the seven transmembrane domain receptor.  相似文献   

16.
Correlated measurement of platelet release and aggregation in whole blood   总被引:3,自引:0,他引:3  
We have used a technique for the simultaneous measurement of platelet activation and aggregation in whole blood using two-color immunofluorescence and flow cytometry to study the relationship between the release reaction and aggregation. A monoclonal antibody specific for the alpha granule membrane protein GMP-140 was used to measure the release reaction, and a monoclonal antibody specific for platelet membrane glycoprotein Ib (GPIb) was used to identify platelets and platelet aggregates. Aggregates were identified as particles expressing both levels of GPIb and size larger than that of resting single platelets. Anticoagulated whole blood was incubated with platelet agonists. At various times samples of the blood were removed and immediately fixed with paraformaldehyde. Blood that had been anticoagulated with ethylenediamine tetraacetic acid showed progressive release of platelets but little or no aggregation. However, blood anticoagulated with citrate or heparin showed correlated release and aggregation. The degree of aggregation was greater in heparin than in citrate. The expression of GPIb and GMP-140 increased in direct proportion to the size of the aggregates. Aggregates were observed varying in apparent diameter up to approximately 20 microns. During prolonged incubation there was progressive disaggregation of adenosine diphosphate (ADP)-induced aggregates. After disaggregation the proportion of GMP-140 negative single platelets increased, indicating that both released and nonreleased platelets participated in the aggregation. There was little or no disaggregation of phorbol myristate acetate (PMA)-induced aggregates. The relatively small size and reversibility of platelet aggregates that we have observed in whole blood may be relevant to phenomena occurring in vivo and in extracorporeal circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of vascular diseases. HCMV infection of endothelial cells may lead to vascular damage in vitro, and acute-phase HCMV infection has been associated with thrombosis. We hypothesized that viral infection of endothelial cells activates coagulation cascades and contributes to thrombus formation and acute vascular catastrophes in patients with atherosclerotic disease. To assess the effects of HCMV on thrombogenesis, we examined the adhesion and aggregation of blood platelets to uninfected and HCMV-infected endothelial cells. At 7 days after infection, platelet adherence and aggregation were greater in infected than in uninfected cultures (2,000 platelets/100 cells and 225 +/- 15 [mean +/- standard error of the mean] aggregates/five microscopic fields versus 100 platelets/100 cells and no aggregates). von Willebrand factor (vWF), ICAM-1, and VCAM-1 but not collagen IV, E-selectin, P-selectin, CD13, and CD31 were expressed at higher levels on infected cells than on uninfected cells. Platelet aggregation was inhibited by blocking of platelet GPIb (with blocking antibodies) or GPIIb/IIIa (with ReoPro) or by blocking of vWF (with polyclonal antibodies to vWF). Furthermore, blocking of vWF, platelet GPIb, and ICAM-1 but not of the endothelial cell marker CD13, alpha(5)beta(3)-integrin, or HCMV glycoprotein B reduced platelet adherence to infected cells by 75% +/- 5%, 74% +/- 5%, or 18% +/- 5%, respectively. The increased thrombogenicity was dependent on active virus replication and could be inhibited by foscarnet and ganciclovir; these results suggest that a late viral gene may be mediating this phenomenon, which may contribute to vascular catastrophes in patients with atherosclerotic disease.  相似文献   

18.
The platelet receptor for von Willebrand factor (vWF), glycoprotein Ib-IX (GPIb-IX), mediates initial platelet adhesion and activation. We show here that the receptor function of GPIb-IX is regulated intracellularly via its link to the filamin-associated membrane skeleton. Deletion of the filamin binding site in GPIb(alpha) markedly enhances ristocetin- (or botrocetin)-induced vWF binding and allows GPIb-IX-expressing cells to adhere to immobilized vWF under both static and flow conditions. Cytochalasin D (CD) that depolymerizes actin also enhances vWF binding to wild type GPIb-IX. Thus, vWF binding to GPIb-IX is negatively regulated by the filamin-associated membrane skeleton. In contrast to native vWF, binding of the isolated recombinant vWF A1 domain to wild type and filamin binding-deficient mutants of GPIb-IX is comparable, suggesting that the membrane skeleton-associated GPIb-IX is in a state that prevents access to the A1 domain in macromolecular vWF. In platelets, there is a balance of membrane skeleton-associated and free forms of GPIb-IX. Treatment of platelets with CD increases the free form and enhances vWF binding. CD also reverses the inhibitory effects of prostaglandin E1 on vWF binding to GPIb-IX. Thus, GPIb-IX-dependent platelet adhesion is doubly controlled by vWF conformation and a membrane skeleton-dependent inside-out signal.  相似文献   

19.
To investigate the role of the glycosylation of the platelet receptor glycoprotein Ib (GPIb, CD 42b), platelets and purified GPIb were deglycosylated by neuraminidase, O- and N-glycosidases. N-deglycosylation and neuraminic-acid cleavage had little effect on ristocetin and botrocetin-induced platelet agglutination. However, O-deglycosylation reduced the response by approximately 50%, and total deglycosylation (the combination of all three glycosidases) fully abolished the response to ristocetin. Interestingly, binding of von Willebrand Factor (vWF) to purified GPIb in the presence of ristocetin and botrocetin in a standardized microtiter plate assay was not altered by partial or even by total deglycosylation. Electron microscopy indicated that the normally stretched ∼50 nm long molecule was ∼32 nm after N-deglycosylation, ∼20 nm after O-deglycosylation, and reduced in a ∼15 nm long collapse by total deglycosylation. These results suggest that deglycosylation has major structural impacts on GPIb, strongly impairingplatelet-vWF interactions; however, vWF binding toisolated GPIbremains unaffected.  相似文献   

20.
Mody NA  King MR 《Biophysical journal》2008,95(5):2556-2574
A three-dimensional multiscale computational model, platelet adhesive dynamics (PAD), is developed and applied in Part I and Part II articles to characterize and quantify key biophysical aspects of GPIbα-von-Willebrand-factor (vWF)-mediated interplatelet binding at high shear rates, a necessary and enabling step that initiates shear-induced platelet aggregation. In this article, an adhesive dynamics model of the transient aggregation of two unactivated platelets via GPIbα-vWF-GPIbα bridging is developed and integrated with the three-dimensional hydrodynamic flow model discussed in Part I. Platelet binding efficiencies predicted by PAD are in good agreement with platelet aggregation behavior observed experimentally, as documented in the literature. Deviations from average vWF ligand size or healthy GPIbα-vWF-A1 binding kinetics are observed in simulations to have significant effects on the dynamics of transient platelet aggregation, i.e., the efficiency of platelet aggregation and characteristics of bond failure, in ways that typify diseased conditions. The GPIbα-vWF-A1 bond formation rate is predicted to have piecewise linear dependence on the prevailing fluid shear rate, with a sharp transition in fluid shear dependency at 7200 s−1. Interplatelet bond force-loading is found to be complex and highly nonlinear. These results demonstrate PAD as a powerful predictive modeling tool for elucidating platelet adhesive phenomena under flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号