首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L M Soby  A M Jamieson  J Blackwell  N Jentoft 《Biopolymers》1990,29(10-11):1359-1366
The linear viscoelastic and rheological properties of high molecular weight ovine submaxillary mucin (OSM) solution have been investigated in terms of the Newtonian steady-flow viscosity [eta(gamma)], the complex oscillatory viscosity [eta*(omega)], and the storage and loss shear moduli [G'(omega) and G"(omega)]. It was observed that tau(gamma), eta*(omega), and G'(omega) are always higher when OSM is dissolved in 0.1M NaCl than when at the same concentration in 6M GdnHCl. This is consistent with previous observations that submaxillary mucins self-associate in 0.1M NaCl to form large aggregates, which are disrupted in 6M GdnHCl. As the OSM concentration increases, the appearance of a plateau shear modulus indicates the formation of a gel network in both solvents. The results suggest gelation involves specific intermolecular interactions, perhaps due to hydrophobic forces between interdigitated oligosaccharide side chains. The viscoelastic behavior of OSM solution at high concentration is thus similar to that reported in the literature for porcine gastric mucin (PGM). However, the OSM gels are mechanically weaker, having moduli that are an order of magnitude lower than those for PGM gels of comparable concentration. The oligosaccharide side chains of OSM consist of only 1-2 sugar units compared to 10-15 for PGM, but it appears that this is sufficient to allow for intermolecular interaction and the formation of weak gels.  相似文献   

2.
《Biorheology》1995,32(4):431-446
Rheological methods have been used to investigate the intermolecular interactions of porcine submaxillary mucins (PSM) in solution. PSM is a high molecular weight glycoprotein consisting of a linear, semi-flexible protein backbone to which a large number of oligosaccharides (1–5 saccharide units) are attached as side chains. Concentrated aqueous solutions of PSM containing different amounts of guanidine hydrochloride (GdnHCl) were subjected to both controlled stress and controlled strain rheological analyses. In the absence of GdnHCl, PSM solutions exhibit viscoelastic properties characteristic of a gel: the storage modulus, G′, is much larger than the loss modulus, G″, at all deformation frequencies, and the compliance is 100% recoverable at small stresses, indicative of strong intermolecular interactions. In 3.0 M aqueous GdnHCl, PSM forms a viscoelastic solution, with G″ > G′ at all frequencies and a relatively small recoverable compliance, pointing to disruption of the intermolecular interactions by the chaotropic salt. Intermediate behavior is observed in 1.5 M GdnHCl, characteristic of a marginal gel: G′ ≈ G″ and greater than 50% recoverable compliance. In dilute solution, PSM behaves viscoelastically as a typical polyelectrolyte. However, concentrated solutions are turbid, the turbidity decreasing as GdnHCl is added, indicating that extensive intermolecular association accompanies the gelation process. The results show that although PSM is secreted in nature as a viscous solution, it can form gels that are similar to those of tracheobronchial and gastric mucins, and suggest common features to the gelation mechanism, with the strength of the gel correlated with the length of the oligosaccharide side chains.  相似文献   

3.
Human tracheobronchial mucin isolated from cystic fibrosis patients (CF HTBM) was purified using a combination of gel filtration and density gradient centrifugation. The resulting mucin was fractionated to reduce polydispersity and to facilitate studies of the molecular weight dependence of mucin viscoelasticity in concentrated solution. The viscoelastic properties of CF HTBM were examined in distilled water, 0.1M salt solutions and chaotropic solvents. In controlled strain experiments (strain ≥ 5%) with increasing mucin concentration, a crossover from sol to gel behavior is observed. The gel strength, as measured by the magnitude of the storage modulus at comparable mucin concentrations, is greatest for distilled water, intermediate for 0.1M NaCl, and lowest far 6M GdnHCl. In distilled water, high molecular weight mucin undergoes a sol-gel transition at ~ 12 mg/mL, and shows evidence of a plateau modulus at higher concentrations. The storage and loss moduli of concentrated high molecular weight fractions in 6M GdnHCl exhibit a power law dependence on frequency typical of weak gels near the sol–gel transition at 20 mg/mL. Similar rheology is observed in 0.1M NaCl and 0.091M NaCl/3 mM CaCl2, but with evidence for additional weak associations at low frequency. The power law exponent in these systems is 0.70 ± 0.02, in good agreement with prediction for networks formed by a percolation mechanism. Low molecular weight fractions in these solvents exhibit a fluid-like viscoelastic response. However, low molecular weight mucin in distilled water shows a strain-dependent increase in elasticity at low frequency indicative of weak intermolecular associations. Comparison of the rheological behavior of CF HTBM with our earlier studies of ovine submaxillary mucin lends support to the idea that carbohydrate side-chain interactions are important in the gelation mechanism of mucins. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Rheological measurements have been performed on three molecular weight fractions of purified canine submaxillary mucin (CSM) dissolved in the chaotropic solvent 6 M guanidine hydrochloride (GdnHCI). Solutions of the lower molecular weight fractions are viscoelastic sols, and their dynamic moduli can be scaled with respect to molecular weight and concentration according to linear viscoelasticity theory. In contrast, preparations of the highest molecular weight fraction form viscoelastic gels that exhibit an equilibrium shear modulus, Ge, which scales with mucin concentration as Ge c3. Amino acid and carbohydrate analyses of all three fractions are similar; thus, the differences in rheological behavior are attributed to molecular weight differences, which affect the degree of coil overlap in solutions of a given concentration. These observations demonstrate conclusively that mucin glycoproteins of high molecular weight form gels under conditions in which the mucin chains physically interpenetrate, even when non-covalent intermolecular interactions are extensively disrupted. A comparison of these results with previous studies of purified submaxillary and tracheobronchial mucins indicates that the carbohydrate side-chain length, in addition to molecular weight, is an important determinant of the observed elastic response and the ability to form physical gels  相似文献   

5.
We report dynamic light scattering measurements over a wide range of scattering vectors for fractionated samples of porcine submaxillary mucin (PSM) glycoproteins in two different solvents: 0.1M NaCl, and 6M GdnHCl. The relaxation spectrum has been successfully resolved into a slow mode corresponding to pure translational diffusion and a fast mode containing information on the relaxation times for intramolecular motion. Analysis of the slow mode permits a light scattering evaluation of the polydispersity of these high molecular weight mucin glycoprotein fractions. Determination of the longest intramolecular relaxation times tau 1 shows that these are much longer for the PSM fractions in 0.1M NaCl compared to 6M GdnHCl. These data are consistent with earlier studies showing that the chain conformation is the same in both solvents, but that in 0.1M NaCl, the PSM glycoprotein undergoes a self-association process that is end-to-end in nature. Since the tau 1 value is intimately related to the viscoelastic behavior of PSM solutions and gels, it is interesting to speculate that the end-to-end association process may be physiologically important.  相似文献   

6.
The intermolecular interactions in concentrated solutions of pig submaxillary mucin (PSM) and sheep submaxillary mucin (SSM) were studied by mechanical spectroscopy. PSM and SSM were purified from detectable protein and nucleic acid by equilibrium centrifugation in a CsCl density gradient. PSM and SSM isolated in the presence of proteinase inhibitors showed distinct differences from preparations isolated in the presence of 0.2 M-NaCl alone, the latter having a carbohydrate and amino acid analysis similar to other preparations isolated by precipitation or ion-exchange techniques. Gel-filtration studies showed that preparations isolated in the presence of 0.2 M-NaCl alone were dissociated into smaller-sized glycoprotein units by 3.5 M-CsCl or 2.0 M-NaCl (SSM), pH 2.0 (PSM) or heating at 100 degrees C for 10 min (PSM and SSM). Preparations isolated in the presence of proteinase inhibitors were not dissociated by these treatments. Proteolysis fragmented all submaxillary mucin preparations into small glycopeptides of Mr 13,700 for PSM and of Mr 14,000 and 15,000 for SSM. PSM preparations when concentrated formed viscoelastic gels, as determined by mechanical spectroscopy. In contrast, SSM showed characteristics of a weak viscoelastic liquid under comparable conditions (coil overlap). PSM glycoprotein isolated in proteinase inhibitors formed weak viscoelastic gels at concentrations between 5 and 15 mg/ml. Preparations of PSM glycoprotein isolated in the presence of 0.2 M-NaCl (concentration 10-97 mg/ml) had the same overall mechanical gel structure as those preparations extracted in the presence of proteinase inhibitors. This gel structure was seen to collapse following proteolysis of both preparations or after acid treatment of the glycoprotein isolated in the presence of 0.2 M-NaCl, consistent with the breakdown in size of the polymeric glycoprotein. Treatment of PSM gel with 0.2 M-2-mercaptoethanol caused a surprising increase in gel strength, which was further markedly increased on removal of the reducing agent by dialysis. An association of reduced subunits of PSM was observed by gel filtration after removal of 0.2 M-2-mercaptoethanol. These results point to intermolecular disulphide exchange occurring on reduction of these PSM glycoprotein preparations. These results demonstrate that gel formation in PSM glycoprotein is similar to that for other gastrointestinal mucus glycoproteins from stomach to colon. Gel formation in PSM, as in other mucins, depends on polymerization of subunits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Animal hairs consist of aggregates of dead cells filled with keratin protein gel. We succeeded in preparing water-soluble hard-keratin proteins and reconstructing the keratin gels by heat-induced disulfide linkages in vitro. Here, the roles of intermolecular hydrophobic interaction and disulfide bonding between the proteins in the gel were discussed. Water-soluble keratin proteins consisting of mixtures of type I ( approximately 48 kDa) and type II ( approximately 61 kDa) were prepared from wool fibers as S-carboxymethyl alanyl disulfide keratin (CMADK). The gelation was achieved by heating an aqueous solution containing at least 0.8 wt % CMADK at 100 degrees C. CMADK solutions with different urea or N-ethylmaleimide concentrations or pH were exposed to dynamic light scattering (DLS) and circular dichroism (CD). DLS clarified the gelation point of CMADK solutions and provided information on the changes in keratin cluster size. DLS suggested two types of gelation mechanism. One was the regenerated chemical disulfide bonding between keratins from CMAD parts of chains. After the gel formed, this bond became important to maintain the gel structure. The other was the physical assembly due to hydrophobic interaction between alpha-helix parts of keratin chains. This hydrophobic assembly also played an important role during gelation. CD confirmed a conformational change in the keratin protein, resulting heat-induced gelation. CD clarified the relationship between keratin protein conformation and gelation, i.e., a rodlike conformation with many alpha-helix structures was necessary to associate keratin chains and form a gel network.  相似文献   

8.
ABA triblock copolymers [A = 2-(diisopropylamino)ethyl methacrylate), DPA or 2-(diethylamino)ethyl methacrylate), DEA; B = 2-methacryloyloxyethyl phosphorylcholine, MPC] prepared using atom transfer radical polymerization dissolve in acidic solution but form biocompatible free-standing gels at around neutral pH in moderately concentrated aqueous solution (above approximately 10 w/v % copolymer). Proton NMR studies indicate that physical gelation occurs because the deprotonated outer DPA (or DEA) blocks become hydrophobic, which leads to attractive interactions between the chains: addition of acid leads to immediate dissolution of the micellar gel. Release studies using dipyridamole as a model hydrophobic drug indicate that sustained release profiles can be obtained from these gels under physiologically relevant conditions. More concentrated DPA-MPC-DPA gels give slower release profiles, as expected. At lower pH, fast, triggered release can also be achieved, because gel dissolution occurs under these conditions. Furthermore, the nature of the outer block also plays a role; the more hydrophobic DPA-MPC-DPA triblock gels are formed at lower copolymer concentrations and retain the drug longer than the DEA-MPC-DEA triblock gels.  相似文献   

9.
The interactions of partially unfolded proteins provide insight into protein folding and protein aggregation. In this work, we studied partially unfolded hen egg lysozyme interactions in solutions containing up to 7 M guanidinium chloride (GdnHCl). The osmotic second virial coefficient (B(22)) of lysozyme was measured using static light scattering in GdnHCl aqueous solutions at 20 degrees C and pH 4.5. B(22) is positive in all solutions, indicating repulsive protein-protein interactions. At low GdnHCl concentrations, B(22) decreases with rising ionic strength: in the absence of GdnHCl, B(22) is 1.1 x 10(-3) mLmol/g(2), decreasing to 3.0 x 10(-5) mLmol/g(2) in the presence of 1 M GdnHCl. Lysozyme unfolds in solutions at GdnHCl concentrations higher than 3 M. Under such conditions, B(22) increases with ionic strength, reaching 8.0 x 10(-4) mLmol/g(2) at 6.5 M GdnHCl. Protein-protein hydrodynamic interactions were evaluated from concentration-dependent diffusivity measurements, obtained from dynamic light scattering. At moderate GdnHCl concentrations, lysozyme interparticle interactions are least repulsive and hydrodynamic interactions are least attractive. The lysozyme hydrodynamic radius was calculated from infinite-dilution diffusivity and did not change significantly during protein unfolding. Our results contribute toward better understanding of protein interactions of partially unfolded states in the presence of a denaturant; they may be helpful for the design of protein refolding processes that avoid protein aggregation.  相似文献   

10.
The synthesis of biocompatible, thermo-responsive ABA triblock copolymers in which the outer A blocks comprise poly(N-isopropylacrylamide) and the central B block is poly(2-methacryloyloxyethyl phosphorylcholine) is achieved using atom transfer radical polymerization with a commercially available bifunctional initiator. These novel triblock copolymers are water-soluble in dilute aqueous solution at 20 degrees C and pH 7.4 but form free-standing physical gels at 37 degrees C due to hydrophobic interactions between the poly(N-isopropylacrylamide) blocks. This gelation is reversible, and the gels are believed to contain nanosized micellar domains; this suggests possible applications in drug delivery and tissue engineering.  相似文献   

11.
The effects of calcium ions on the solution properties of porcine submaxillary mucin (PSM) have been investigated by static and dynamic light scattering. The weight average molecular weights of PSM fractions are unaffected by the addition of up to 0.5M CaCl2: these data are within experimental error of those for solutions in 0.1M NaCl. The distribution of relaxation frequencies derived from the dynamic data shows the existence of two distinct relaxation modes. The average relaxation times have been interpreted to yield the z-average translational diffusion coefficient and the longest intramolecular relaxation time tau1. A plot of tau1 vs the mean value of 1/Rh-3z is linear, and consistent with plots of such data recorded for PSM in 0.1m NaCl and 6M GdnHCl solutions. However, the tau values and the associated results for the mean value of R-1h-1z in 0.5M CaCl2 are smaller than those determined in 0.1M NaCl. This suggests that the conformation of PSM in CaCl2 solution is more contracted than those in the other two solvents. These results are consistent with the compact packaging of mucin in the secretary granules that have elevated Ca2+ levels.  相似文献   

12.
Rheological characteristics during chemical gelation with the cross-linker ethylene glycol diglycidyl ether (EGDE) of semidilute aqueous solutions of hydroxyethylcellulose (HEC) and of two hydrophobically modified analogues (HM-1-HEC and HM-2-HEC) are reported. In addition, rheological features of gelling samples (dextran and its hydrophobically modified analogue (HM-dextran)) of a different structure have been examined. Some swelling experiments on these gels in the postgel region are also reported. The gelation time of the hydroxyethylcellulose systems decreased with increasing cross-linker concentration, and incorporation of hydrophobic units of HEC resulted in a slower gelation. The time of gelation for the dextran system was only slightly affected by the incorporation of hydrophobic groups (HM-dextran). At the gel point, a power law frequency dependence of the dynamic storage modulus (G' proportional to omegan') and loss modulus (G' proportional to omegan') was observed for all gelling systems with n' = n' = n. The attachment of hydrophobic moieties on the dextran chains had virtually no impact on the value of n (n = 0.77), and the percolation model describes the incipient dextran gels. By increasing the number of hydrophobic groups of the HEC polymer, the value of n for the corresponding incipient gel drops significantly, and the value of the gel strength parameter increases strongly. Incorporation of hydrophobic units in the HEC chains promotes the formation of stronger incipient gels because of the contribution from the hydrophobic association effect. The frequency dependence of the complex viscosity reveals that all the investigated gels become more solidlike in the postgel domain. Far into the postgel region, the hydrophobicity of HEC plays a minor role for the strength of the gel network, whereas the values of the complex viscosity are significantly higher for HM-dextran than for the corresponding dextran gel. The swelling experiments on HEC, HM-1-HEC, and HM-2-HEC systems disclose that the degree of swelling of the postgels in water is quite different, depending on the relative distance from the gel point at which the cross-linker reaction is quenched. At a given distance from the gel point, the swelling of the HEC gel is less pronounced than for the corresponding hydrophobically modified samples. At this stage, the swelling of the HM-dextran gel is stronger than for the dextran gel.  相似文献   

13.
Gels have been prepared from aqueous solutions of anthracyclines by addition of salts. The gels are thixotropic and thermally reversible. They are stable for several months in the refrigerator and for long times even at room temperature. The gel-solution transition (melting) temperature depends on the concentration of the anthracycline and on the concentration and nature of the added salt. The melting has been followed by 1H-NMR. Only weak intermolecular interactions (stacking and hydrogen bonds) originate the drug network, within which the solvent is entrapped. 1H-NMR and polarimetric data suggest a stacked helical arrangement of the anthracycline molecules. The gelation process is cooperative.  相似文献   

14.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

15.
Protein aggregation is commonly observed during protein refolding. To better understand this phenomenon, the intermolecular interactions experienced by a protein during unfolding and refolding are inferred from second virial coefficient (SVC) measurements. It is accepted that a negative SVC is indicative of protein-protein interactions that are attractive, whereas a positive SVC indicates net repulsive interactions. Lysozyme denatured and reduced in guanidinium hydrochloride exhibited a decreasing SVC as the denaturant was diluted, and the SVC approached zero at approximately 3 M GdnHCl. Further dilution of denaturant to renaturation conditions (1.25 M GdnHCl) led to a negative SVC, and significant protein aggregation was observed. The inclusion of 500 mM L-arginine in the renaturation buffer shifted the SVC to positive and suppressed aggregation, thereby increasing refolding yield. The formation of mixed disulfides in the denatured state prior to refolding also increased protein solubility and suppressed aggregation, even without the use of L-arginine. Again, the suppression of aggregation was shown to be caused by a shift from attractive to repulsive intermolecular interactions as reflected in a shift from a negative to a positive SVC value. To the best of our knowledge, this is the first time that SVC data have been reported for renaturation studies. We believe this technique will aid in our understanding of how certain conditions promote renaturation and increase protein solubility, thereby suppressing aggregation. SVC measurements provide a useful link, for protein folding and aggregation, between empirical observation and thermodynamics.  相似文献   

16.
The ageing process of high methoxyl pectin (HMP)/sucrose gels was followed at different ageing temperatures by small amplitude oscillatory experiments. Dynamic mechanical measurements allowed the characterisation of the point at which the system undergoes the sol/gel transition. The HMP/sucrose system is extremely sensitive to temperature variation during ageing, especially in the lower temperature range. The viscoelastic behaviour through the gel point changes with the ageing temperature, probably due to variations in mobility of the pectin chains, and consequently, in the lifetime of junction zones. Weaker pectin networks are formed under thermal conditions unfavourable to the development of hydrophobic interactions. Gel time and elastic modulus have a complex dependence on temperature, which could be attributed to the different thermal behaviour of the intermolecular interactions that stabilise the nonpermanent cross links of these physical networks.  相似文献   

17.
Aggregation phenomena in aqueous solutions of purified human tracheobronchial mucin have been studied by rheological methods, steady-state fluorescence, quasielastic light scattering, and spin probe techniques. At temperatures below 30 degrees C and concentrations above 15 mg/mL and in the absence of chaotropic agents, mucin solutions are viscoelastic gels. A gel-sol transition is observed at temperatures above 30 degrees C that is manifested by the diminishing storage modulus and a loss tangent above unity throughout the studied frequency range of the oscillatory shear. No decline in the mucin molecular weight is observed by size-exclusion chromatography above 30 degrees C in the absence of redox agents or proteolytic enzymes. Aggregation of hydrophobic protein segments of the mucin chains at 37 degrees C is indicated by QELS experiments. The decreasing polarity of the microenvironment of pyrene solubilized into mucin solutions at temperatures above 30 degrees C, concomitant with the gel-sol transition, shows the hydrophobicity of the formed aggregates. ESR spectra of the fatty acid spin probe, 16-doxylstearic acid indicate that the aggregate-aqueous interface becomes more developed at elevated temperatures.  相似文献   

18.
The presence of hydrophobic sites in fetuin, ovine submaxillary mucin and two homogeneous canine tracheal mucins was established by fluorescence probe techniques. The interaction between the above-mentioned glycoproteins and two hydrophobic fluorescent compounds, sodium mansate and mansylphenylalanine, was accompanied by an enhancement in fluorescence and a shift of the fluorescence maxima to shorter wavelengths. The introduction of a phenylalanine residue to the mansyl group enhanced the binding affinity of the probe for the hydrophobic sites of these glycoproteins as evidenced by lower values for the dissociation constants. The high molecular weight (581 600) tracheal mucin, which had the highest carbohydrate content (80%) of all the glycoproteins investigated, exhibited the highest fluorescence enhancement and the largest number of binding sites for these fluorescent probes.  相似文献   

19.
We present dynamic light scattering (DLS) and hydrophobic dye-binding data in an effort to elucidate a molecular mechanism for the ability of gastric mucin to form a gel at low pH, which is crucial to the barrier function of gastric mucus. DLS measurements of dilute mucin solutions were not indicative of intermolecular association, yet there was a steady fall in the measured diffusion coefficient with decreasing pH, suggesting an apparent increase in size. Taken together with the observed rise in depolarized scattering ratio with decreasing pH, these results suggest that gastric mucin undergoes a conformational change from a random coil at pH >/= 4 to an anisotropic, extended conformation at pH < 4. The increased binding of mucin to hydrophobic fluorescent with decreasing pH indicates that the change to an extended conformation is accompanied by exposure of hydrophobic binding sites. In concentrated mucin solutions, the structure factor S(q, t) derived from DLS measurements changed from a stretched exponential decay at pH 7 to a power-law decay at pH 2, which is characteristic of a sol-gel transition. We propose that the conformational change facilitates cross-links among mucin macromolecules through hydrophobic interactions at low pH, which in turn leads to a sol-gel transition when the mucin solution is sufficiently concentrated.  相似文献   

20.
Duck delta2-crystallin is a soluble tetrameric lens protein. In the presence of guanidinium hydrochloride (GdnHCl), it undergoes stepwise dissociation and unfolding. Gel-filtration chromatography and sedimentation velocity analysis has demonstrated the dissociation of the tetramer protein to a monomeric intermediate with a dissociation constant of 0.34 microM3. Dimers were also detected during the dissociation and refolding processes. The sharp enhancement of 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence at 1 M GdnHCl strongly suggested that the dissociated monomers were in a molten globule state under these conditions. The similar binding affinity (approximately 60 microM) of ANS to protein in the presence or absence of GdnHCl suggested the potential assembly of crystallins via hydrophobic interactions, which might also produce off-pathway aggregates in higher protein concentrations. The dynamic quenching constant corresponding to GdnHCl concentration followed a multistate unfolding model implying that the solvent accessibility of tryptophans was a sensitive probe for analyzing delta2-crystallin unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号