首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific radioactivities of molecular species of phosphatidyl choline(PC), phosphatidyl ethanolamine(PE) and 1,2-diacylglycerol were determined in rabbit brain 15 and 30 min after intraventricular injection of 10OpCi of either [U-14C]glucose or [U-14C]glycerol. The rate of de nouo synthesis of glycerophospholipids and their molecular species could be determined after glycerol labelling, since 94.0–99.7% of 14C activity was recovered in glyceryl moieties of brain lipids. After injection of glucose radioactivity was measured in both glyccrol and acyl residues of lipids. High incorporation rates were measured in species of PC, PE and 1,2-diacylglycerol with oleic acid in position 2 and with palmitic, stearic or oleic acids in position 1. The conclusion may therefore be drawn that these molecular species were preferably synthesized de novo by selective acylation of glycerol 3-phosphate. The lowest specific activities were observed for 1,2-dipalmitoyl- and l-stearoyl-2- arachidonoyl-glycerol, -PC and -PE. These turnover rates point to incorporation of arachidonate, and probably also of palmitate in dipalmitoyl-PC, amounting to 20% of total PC, via deacylation-acylation- cycle.  相似文献   

2.
We examined the effect of etomoxir treatment on de novo cardiolipin (CL) biosynthesis in H9c2 cardiac myoblast cells. Etomoxir treatment did not affect the activities of the CL biosynthetic and remodeling enzymes but caused a reduction in [1-14C]palmitic acid or [1-14C]oleic acid incorporation into CL. The mechanism was a decrease in fatty acid flux through the de novo pathway of CL biosynthesis via a redirection of lipid synthesis toward 1,2-diacyl-sn-glycerol utilizing reactions mediated by a 35% increase (P < 0.05) in membrane phosphatidate phosphohydrolase activity. In contrast, etomoxir treatment increased [1,3-3H]glycerol incorporation into CL. The mechanism was a 33% increase (P < 0.05) in glycerol kinase activity, which produced an increased glycerol flux through the de novo pathway of CL biosynthesis. Etomoxir treatment inhibited 1,2-diacyl-sn-glycerol acyltransferase activity by 81% (P < 0.05), thereby channeling both glycerol and fatty acid away from 1,2,3-triacyl-sn-glycerol utilization toward phosphatidylcholine and phosphatidylethanolamine biosynthesis. In contrast, etomoxir inhibited myo-[3H]inositol incorporation into phosphatidylinositol and the mechanism was an inhibition in inositol uptake. Etomoxir did not affect [3H]serine uptake but resulted in an increased formation of phosphatidylethanolamine derived from phosphatidylserine. The results indicate that etomoxir treatment has diverse effects on de novo glycerolipid biosynthesis from various metabolic precursors. In addition, etomoxir mediates a distinct and differential metabolic channeling of glycerol and fatty acid precursors into CL.  相似文献   

3.
The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.  相似文献   

4.
The effect of phospholipase C treatment on cardiolipin biosynthesis was investigated in intact H9c2 cardiac myoblasts. Treatment of cells with phosphatidylcholine-specific Clostridium welchii phospholipase C reduced the pool size of phosphatidylcholine compared with controls whereas the pool size of cardiolipin and phosphatidylglycerol were unaffected. Pulse labeling experiments with [1,3-3H]glycerol and pulse-chase labeling experiments with [1,3-3H]glycerol were performed in cells incubated or pre-incubated in the absence or presence of phospholipase C. In all experiments, radioactivity incorporated into cardiolipin and phosphatidylglycerol were reduced in phospholipase C-treated cells with time compared with controls indicating attenuated de novo biosynthesis of these phospholipids. Addition of 1,2-dioctanoyl-sn-glycerol, a cell permeable 1,2-diacyl-sn-glycerol analog, to cells mimicked the inhibitory effect of phospholipase C on cardiolipin and phosphatidylglycerol biosynthesis from [1,3-3H]glycerol indicating the involvement of 1,2-diacyl-sn-glycerol. The mechanism for the reduction in cardiolipin and phosphatidylglycerol biosynthesis in phospholipase C-treated cells appeared to be a decrease in the activities of phosphatidic acid:cytidine-5triphosphate cytidylyltransferase and phosphatidylglycerolphosphate synthase, mediated by elevated 1,2-diacyl-sn-glycerol levels. Upon removal of phospholipase C from the incubation medium, phosphatidylcholine biosynthesis from [methyl-3H]choline was markedly stimulated. These data suggest that de novo phosphatidylglycerol and cardiolipin biosynthesis may be regulated by 1,2-diacyl-sn-glycerol and support the notion that phosphatidylglycerol and cardiolipin biosynthesis may be coordinated with phosphatidylcholine biosynthesis in H9c2 cardiac myoblast cells.  相似文献   

5.
We have investigated pathways of lipid metabolism in spermatozoa and generation of various metabolites with potential messenger functions during exocytosis stimulated with A23187/Ca2+. Stimulation of boar spermatozoa resulted in a considerable rapid increase in saturated/unsaturated 1,2-diacylglycerol (1,2-SU-DAG) and, concomitantly, a substantial reduction in disaturated 1,2-diacylglycerol (1,2-DS-DAG), and in phosphatidylcholine (PC). These changes preceded the onset of exocytosis. Phosphatidic acid was sometimes generated in parallel, but usually rose later, suggesting that 1,2-SU-DAG may be formed directly by phospholipase C action. Lipid changes observed in stimulated spermatozoa that have been prelabelled with several lipid precursors ([14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid) suggested the existence of a unique process involving the utilization of the high basal levels of 1,2-DS-DAG to form 1,2-SU-DAG, with the latter being subsequently employed to replenish the PC pool. An ensuing generation of lysoPC and arachidonic acid, which paralleled the occurrence of exocytosis, revealed that the newly synthesized PC was hydrolyzed by phospholipase A2. The highest levels of 1,2-SU-DAG, minimum levels of 1,2-DS-DAG, and the regeneration of the PC pool were tightly coupled to the beginning of visible exocytosis. These results suggest that changes in these lipid metabolites may be fundamental processes during acrosomal exocytosis occurring in response to physiological agonists. Mol. Reprod. Dev. 48:95–105, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
The lipids of Caldariella acidophila, an extreme thermophile member of the new archaebacteria group, are macrocyclic tetraethers. They are made up of two glycerol molecules (or one glycerol and one nonitol) bridged through ether linkages by two C4016,16′-biphytanyl chains. To elucidate the biosynthesis of the glycerol moiety of these tetraethers and the mechanism of glycerol ether assembly, labelled [U-14C, 1(3)-3H]glycerol and [U-14C, 2-3H]glycerol, were fed to C. acidophila. Both precursors were selectively incorporated with high efficiency, and without any change in the 3H/14C ratio, in the glycerol moiety of tetraethers. These results suggest that the ether forming step in the biosynthesis of tetraether lipids of C. acidophila, occurs without any loss of hydrogen from any of the glycerol carbons which in turn could be directly alkylated by geranylgeranyl pyrophosphate. The incorporation of radioactivity in the isoprenoid chains and into nonitol is also analysed.  相似文献   

7.
We have investigated pathways of lipid metabolism in boar spermatozoa sperm cells incubated for up to 3 days with [14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid or incorporated these precursors into diglycerides and/or phospholipids. When spermatozoa were incubated with [14C]palmitic acid or [14C]glycerol, there was first an incorporation into phosphatidic acid, followed by labelling of 1,2-diacylglycerol (DAG) and then phosphatidyl-choline (PC). This indicates that the de novo pathway of phospholipid synthesis is active in these cells. However, not all DAG was converted to PC. A pool of di-saturated DAG, which represented a considerable proportion of the high basal levels of DAG, accumulated the majority of label. Another DAG pool, containing saturated fatty acids in position 1 and unsaturated fatty acids in position 2 and representing the remaining basal DAG, was in equilibrium with PC. When spermatozoa were incubated with [14C]arachidonic acid, there was a considerable incorporation of label into PC, which indicates the presence of an active deacylation/reacylation cycle. The behaviour of certain lipid pools varied depending on the temperature at which spermatozoa were incubated. For example, in the presence of [14C]palmitic acid or [14C]arachidonic acid, there was more incorporation of label into PC when spermatozoa were incubated at 25°C than when incubated at 17°C. Taken together, these results indicate that spermatozoa have an active lipid synthetic capacity. It may therefore be possible to design methods to evaluate the metabolic activity of boar spermatozoa based on the incorporation of lipid precursors under standardized conditions. Mol. Reprod. Dev. 47:105–112, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Membrane phospholipid turnover was investigated during histamine release from rat mast cells. Addition of calcium ionophore A23187 (0.5 microgram/ml) to mast cells prelabeled with [3H]glycerol induced the rapid and progressive increase in phosphatidic acid (PA) and 1,2-diacylglycerol (DG), which was concomitant with the small rise in phosphatidylinositol (PI). Loss of the level in triacylglycerol (TG) was very marked. Polyamine compound 48/80 (5 micrograms/ml) was shown to cause rises in PA, 1,2-DG, and PI without any significant changes in TG. Both stimuli increased incorporation of exogenous [3H]glycerol into phospholipids, indicating the involvement of de novo synthesis in phospholipid metabolism. Studies with [3H]arachidonic acid-labeled mast cells showed an enhanced liberation of radioactive arachidonate and metabolites upon histamine release. There were associated decreases of radioactivity in phosphatidylcholine (PC) and TG when exposed to A23187, while phosphatidylethanolamine (PE) was degraded as a result of 48/80 activation. The transient increases of [3H]arachidonoyl-1,2-DG and PA were caused by 48/80, while A23187 showed a gradual rise in the radioactivity in these two lipid fractions. These findings reflect activation of phospholipase C. When mast cells were activated by low concentrations of A23187 (0.1 microgram/ml) and 48/80 (0.5 microgram/ml), different behaviors of PI metabolism were observed. An early degradation of PI and a subsequent formation of 1,2-DG and PA suggest that the lower concentrations of these agents stimulate the PI cycle initiated by PI breakdown rather than de novo synthesis. These results demonstrate that marked and selective changes in membrane phospholipid metabolism occur during histamine release from mast cells, and that these reactions seem to be controlled by the coordination of degradation and biosynthesis, depending on the type and the concentration of stimulants. A23187 stimulates arachidonate release perhaps via the cleavages of PC and TG, whereas 48/80 liberates arachidonate from PE.  相似文献   

9.
The incorporation of [32P]orthophosphate into phosphatidylinositol (PI) of pig lymphocytes was markedly increased by stimulation with concanavalin A. The labeling of PI with [3H]glycerol was also enhanced significantly, indicating that both de novo synthesis and recircular system (PI response) of PI were accelerated. This rapid labeling of PI might be related to the rapid breakdown of phosphatidylinositol 4,5-bisphosphate which was observed in various stimulated tissues. Concanavalin A also accelerated the labeling of phosphatidic acid with 32P and [3H]glycerol. To determine the dependence of this phenomenon on the fatty acid composition of both phospholipids, we separated PI and phosphatidic acid into individual molecular species. The predominant molecular species in PI was tetraene (81.6%) and those in phosphatidic acid were monoene (53.0%), diene (15.8%) and tetraene (19.2%), respectively. Interestingly, the incorporation of 32P into arachidonic acid-containing species (tetraene) was most rapidly elevated. On the other hand, the increment of 32P into saturated + monoene, diene and triene was relatively smaller and resembled that of [3H]glycerol. Similarly, the incorporation of 32P into tetraene of phosphatidic acid was preferentially accelerated. This is the first report concerning the metabolism of molecular species of phosphatidic acid in stimulated cells. These results indicate that the PI recirculating system is virtually dependent on tetraenoic species and that the participation of other molecular species is small. The increased de novo synthesis mainly depends upon molecular species other than tetraene. Arachidonic acid-containing species which turn over rapidly via the PI cycle may have an important role in the mitogenic triggering.  相似文献   

10.
To investigate the short‐term (3 h) effect of salt on the metabolism of purine, pyrimidine and pyridine nucleotides in mangrove (Bruguiera sexangula) cells, we examined the uptake and overall metabolism of radiolabelled intermediates involved in the de novo pathways and substrates of salvage pathways for nucleotide biosynthesis in the presence and absence of 100 mM NaCl. Uptake by the cells of substrates for the salvage pathways was much faster than uptake of intermediates of the de novo pathways. The activity of the de novo pyrimidine biosynthesis estimated by [2‐14C]orotate metabolism was not significantly affected by the salt. About 20–30% of [2‐14C]uridine, [2‐14C]uracil and more than 50% of [2‐14C]cytidine were salvaged for pyrimidine nucleotide biosynthesis. However, substantial quantities of these compounds were degraded to 14CO2 via β‐ureidopropionate (β‐UP), and degradation of β‐UP was increased by the salt. The activities of the de novo pathway, estimated by [2‐14C] 5‐aminoimidazole‐4‐carboxamide ribonucleoside, and the salvage pathways from [8‐14C]adenosine and [8‐14C]guanosine for the purine nucleotide biosynthesis were not influenced by the salt. Most [8‐14C]hypoxanthine was catabolised to 14CO2, and other purine compounds are also catabolised via xanthine. Purine catabolism was stimulated by the salt. [3H]Quinolinate, [carbonyl‐14C]nicotinamide and [carboxyl‐14C]nicotinic acid were utilised for the biosynthesis of pyridine nucleotides. The salvage pathways for pyridine nucleotides were significantly stimulated by the salt. Trigonelline was synthesised from all pyridine precursors that were examined; its synthesis was also stimulated by the salt. We discuss the physiological role of the salt‐stimulated reactions of nucleotide metabolism.  相似文献   

11.
Abstract— Superior cervical ganglia from adult rats were incubated for 1–6 h in a physiological salt solution containing 32Pi [2-3H]inositol, [U-14C]glycerol, or [U-14C]acetate. Control ganglia were at rest throughout incubation, while the preganglionic nerves of the experimental ganglia were stimulated at 5/s, starting after 1 h of incubation. Responses were monitored by recording the action potentials in a postganglionic nerve. Radioactivity of phospholipids was counted after separation of the lipids by paper chromatography. Specific activity of free inositol and the gamma-phosphate of ATP were measured, the latter by using the hexokinase reaction with [14C]glucose, isolating the product, and counting its content of 32P and 14C. At rest, labelling of phosphatidylinositol (PI), phosphatidylcholine and phosphatidylethanolamine proceeded at constant rates for at least 8 h with all precursors which entered them, except that labelling with glycerol slowed after 2–4 h. During stimulation the rate of incorporation of 32P into PI approximately doubled, as previously reported. The increased rate remained constant for 3 h and then reverted to approximately the resting rate, although the electrical response continued unabated for 16 h. This decrease in rate of 32P-labelling of PI in the ganglion could not be accounted for by transport into the postganglionic nerves. In stimulated preparations, after 4 h of incubation the labelling of PI was increased above the resting level by 53 ± 5% (mean ±s.e.m. ) with [3H]inositol, 97 ± 6% with 32Pi, 24 ± 6% with [14C]glycerol and ?3 ± 10% with [14C]acetate. The increase with glycerol was thus statistically significant, in contrast with the findings of others on brain, where an increase of this size has neither been demonstrated nor excluded. There were no accompanying effects of stimulation on the specific activities of the gamma-P of ATP or of the free inositol within the ganglion that were sufficient to explain the difference between the labelling of PI with P and that with inositol.  相似文献   

12.
Evidence is presented in support of a pathway in skeletal muscle of glyconeogenesis (glycogen biosynthesis de novo) from L-glutamate and related amino acids involving the enzyme phosphoenolpyruvate carboxykinase (PEP CK). In the rat hemidiaphragm in vitro, not only did L-[U-14C]glutamate exert a glycogen-sparing action, but14C-label was incorporated into glycogen. The incorporation is thought not to be simply via label randomization and was decreased by factors that increased glycolysis or pyruvate oxidation. 3-Mercaptopicolinate and amino-oxyacetate, specific inhibitors of PEP CK and aminotransferase-type enzymes, respectively, decreased14C-incorporation from L-[U-14C]glutamate into glycogen. No quantitative determination of apparent glyconeogenic flux was made, and it remains to be established whether glyconeogenesis via PEP CK and/or via PEP CK coupled with 'malic' enzyme (or pyruvate carboxylase) is functionally important in skeletal muscle.  相似文献   

13.
Pretreatment of discs excised from developing tubers of potato (Solanum tuberosum L.) with 10 millimolar sodium fluoride induced a transient increase in 3-phosphoglycerate content. This was followed by increases in triose-phosphate, fructose 1,6-bisphosphate and hexose-phosphate (glucose 6-phosphate + fructose 6-phosphate + glucose 1-phosphate). The effect of fluoride is attributed to an inhibition of glycolysis and a stimulation of triose-phosphate recycling (the latter confirmed by the pattern of 13C-labeling [NMR] in sucrose when tissue was supplied with [2-13C]glucose). Fluoride inhibited the incorporation of [U-14C] glucose, [U-14C]sucrose, [U-14C]glucose 1-phosphate, and [U-14C] glycerol into starch. The incorporation of [U-14C]ADPglucose was unaffected. Inhibition of starch biosynthesis was accompanied by an almost proportional increase in the incorporation of 14C into sucrose. The inhibition of starch synthesis was accompanied by a 10-fold increase in tissue pyrophosphate (PPi) content. Although the subcellular localization of PPi was not determined, a hypothesis is presented that argues that the PPi accumulates in the amyloplast due to inhibition of alkaline inorganic pyrophosphatase by fluoride ions.  相似文献   

14.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

15.
The incorporation of polar and non-polar moieties into cerebral cortex (CC) and cerebellum (CRBL) phospholipids of adult (3.5-month-old) and aged (21.5-month-old) rats was studied in a minced tissue suspension. The biosynthesis of acidic phospholipids through [3H]glycerol appears to be slightly increased with respect to that of zwitterionic or neutral lipids in CC of aged rats with respect to adult rats. On the contrary, the synthesis of phosphatidylcholine (PC) from [3H]choline was inhibited. However, the incorporation of [14C]serine into phosphatidylserine (PS) was higher in CC and CRBL in aged rats with respect to adult rats. The synthesis of phosphatidylethanolamine (PE) from PS was not modified during aging. Saturated ([3H]palmitic) and polyunsaturated ([3H]arachidonic) acids were incorporated successfully by adult and aged brain lipids. In addition [3H]palmitic, [3H]oleic and [3H]arachidonic acid were employed as glycerolipid precursors in brain homogenate from aged (28.5 month old) and adult (3.5 month old) rats. [3H]oleic acid incorporation into neutral lipids (NL) and [3H]arachidonic acid incorporation into PC, PE and phosphatidylinositol (PI) were increased in aged rats with respect to adult rats. Present results show the ability and avidity of aged brain tissue in vitro to incorporate unsaturated fatty acids when they are supplied exogenously. They also suggest a different handling of choline and serine by base exchange enzyme activities to synthesize PC and PS during aging.  相似文献   

16.
Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons.  相似文献   

17.
Various solutions of labeled precursors were absorbed by the cotyledons of etiolated Euphorbia lathyris L. seedlings. Incorporation of 14C into triterpenes from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]glyoxylate, [U-14C]glycerol, [U-14C]serine, [U-14C]xylose, [U-14C]glucose, and [U-14C]sucrose was obtained. The [14] triterpenes synthesized from [14C] sugars were mainly of latex origin. [14C]mevalonic acid was only involved in terpenoid synthesis outside the laticifers. Exogenously supplied glyoxylate, serine, and glycerol were hardly involved in lipid synthesis at all. The 14C-distribution over the various triterpenols was consistent with the mass distribution of these constituents in gas liquid chromatography when [14C]sugars, [14C]acetate, and [14C]pyruvate were used. These precursors were supplied to the seedlings in the presence of increasing amounts of unlabeled substrates. The amount of substrate directly involved in lipid synthesis as well as the absolute triterpenol yield was calculated from the obtained [14C]triterpenols. The highest yield was obtained in the sucrose incorporated seedlings, being 25% of the daily increase of latex triterpenes in growing seedlings.  相似文献   

18.
《Insect Biochemistry》1990,20(6):645-652
Post-emergence levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and ketocatechol were determined in cuticle from adult Tenebrio molitor. Possible pathways for biosynthesis of DOPAC were studied by comparing the incorporation of injected [U-14C]tyrosine, [7-14C]dopamine, [7-14C]DOPA, [7-14C]tyramine, [U-14C]p-hydroxyphenylpyruvic acid (p-HPPA) and [ring-3H]p-hydroxyphenylacetic acid (p-HPAA) into cuticular DOPAC during its period of maximal increase 1–3 days after adult emergence. Increased incorporation of [U-14C]tyrosine between days 0 and 3 suggests rapid de novo biosynthesis of DOPAC from this primary precursor. Of the putative intermediates tested, only p-HPPA had a pattern of incorporation similar to that seen with tyrosine. Since p-HPAA was poorly incorporated into both cuticle and DOPAC, a tentative pathway tyrosine → p-HPPA → 3,4-dihydroxyphenylpyruvic acid → DOPAC is proposed.  相似文献   

19.
The metabolism of cardiolipin was investigated in a Chinese hamster lung fibroblast cell line CCL16-B2 deficient in oxidative energy metabolism and its parental cell line CCL16-B1. Mitochondrial enzyme activities involved in de novo cardiolipin biosynthesis were elevated in CCL16-B2 cells compared with CCL16-B1 cells, indicating initially an elevation in cardiolipin biosynthesis. Content of all phospholipids, including cardiolipin and its precursors, and high energy nucleotides were unaltered in CCL 16-B2 cells compared to CCL 16-B1 cells. When cells were incubated with [1,3-3H]glycerol for up to 4 h radioactivity incorporated into cardiolipin in CCL16-B2 cells did not differ compared with CCL16-B1 cells. In contrast, radioactivity incorporated into phosphatidylglycerol, the immediate precursor of cardiolipin, was elevated over 2-fold in CCL16-B2 cells compared with CCL16-B1 cells. Analysis of the fatty acid molecular species in cardiolipin revealed alterations in the level of unsaturated but not saturated fatty acids in B2 compared with B1 cells. In vivo cardiolipin remodeling, that is, the deacylation of cardiolipin to monolysocardiolipin followed by reacylation back to cardiolipin, with [1-14C]palmitate and [l-14C]oleate and in vitro mitochondrial phospholipid remodeling with [1-14C]linoleate were altered in CCL16-B2 cells compared to CCL16-B1 cells. Since both the appropriate content and molecular composition of cardiolipin is required for optimum mitochondrial oxidative phosphorylation, we suggest that the difference in CL molecular species composition observed in CCL16-B2 cells, mediated by alterations in in vivo cardiolipin remodeling, may be one of the underlying mechanisms for the reduction in oxidative energy production in CCL16-B2 cells.  相似文献   

20.
We studied the metabolism of [U-14C]isoleucine by intact and homogenized corpora allata (CA) from various insect species to determine how this substrate is converted to precursors of juvenile hormone (JH). CA homogenates of the lepidopterans Manduca sexta, Hyalophora cecropia, and Samia cynthia metabolize [U-14C]isoleucine to several products including 2-keto-3-methyl-valerate, 2-methylbutyrate, CO2, propionate, and acetate. Intact CA of male H. cecropia produce particularly high levels of 2-keto-3-methylvalerate, indicating a highly active branched-chain-amino acid transaminase. In contrast, CA homogenates from the nonlepidopterans Periplaneta americana, Schistocerca nitens, Tenebrio molitor, and Diploptera punctata barely metabolize [U-14C]isoleucine. However, P. americana CA homogenate metabolizes [U-14C]2-keto-3-methylvalerate, the transamination product of [U-14C]isoleucine, more rapidly than does a homogenate of M. sexta CA. Furthermore, intact CA from P. americana incubated with [U-14C]2-keto-3-methylvalerate incorporate low levels of 14C into JH III, but do not metabolize this substrate to JH II or JH I. Intact CA from female Diploptera punctata produce very high levels of JH III, but are also unable to incorporate radiolabel from [U-14C]isoleucine into JH III, which substantiates our findings with other nonlepidopteran CA. The results suggest that CA of nonlepidopteran insects lack an active branched-chain amino acid transaminase and, consequently, are unable to utilize these substrates for JH biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号