首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elongation of the mouse anteroposterior axis depends on a small population of progenitors initially located in the primitive streak and later in the tail bud. Gene expression and lineage tracing have shown that there are many features common to these progenitor tissues throughout axial elongation. However, the identity and location of the progenitors is unclear. We show by lineage tracing that the descendants of 8.5 d.p.c. node and anterior primitive streak which remain in the tail bud are located in distinct territories: (1) ventral node descendants are located in the widened posterior end of the notochord; and (2) descendants of anterior streak are located in both the tail bud mesoderm, and in the posterior end of the neurectoderm. We show that cells from the posterior neurectoderm are fated to give rise to mesoderm even after posterior neuropore closure. The posterior end of the notochord, together with the ventral neurectoderm above it, is thus topologically equivalent to the chordoneural hinge region defined in Xenopus and chick. A stem cell model has been proposed for progenitors of two of the axial tissues, the myotome and spinal cord. Because it was possible that labelled cells in the tail bud represented stem cells, tail bud mesoderm and chordoneural hinge were grafted to 8.5 d.p.c. primitive streak to compare their developmental potency. This revealed that cells from the bulk of the tail bud mesoderm are disadvantaged in such heterochronic grafts from incorporating into the axis and even when they do so, they tend to contribute to short stretches of somites suggesting that tail bud mesoderm is restricted in potency. By contrast, cells from the chordoneural hinge of up to 12.5 d.p.c. embryos contribute efficiently to regions of the axis formed after grafting to 8.5 d.p.c. embryos, and also repopulate the tail bud. These cells were additionally capable of serial passage through three successive generations of embryos in culture without apparent loss of potency. This potential for self-renewal in chordoneural hinge cells strongly suggests that stem cells are located in this region.  相似文献   

2.
3.
Two distinct sources for a population of maturing axial progenitors   总被引:2,自引:0,他引:2  
In mammals, the primitive streak region and its descendant, the tail bud, are the source of nascent mesoderm and spinal cord throughout axial elongation. A localised population of long-term axial progenitors has been identified in a region of the tail bud, the chordoneural hinge, but the localisation of such progenitors at earlier stages is so far untested. By studying gene expression, we have shown that a specific topological arrangement of domains persists from the streak to the tail bud, and includes an area (the node-streak border) in which ectoderm that expresses primitive streak markers overlies the prospective notochord. This arrangement persists in the chordoneural hinge. Homotopic grafts show that, as in other vertebrates, cells in the streak and node predominantly produce mesoderm, whereas those in the node-streak border and lateral to the streak additionally produce neurectoderm. Node-streak border descendants populate not only neurectoderm, somites and notochord throughout the axis, but also the chordoneural hinge. Ectoderm lateral to the embryonic day (E)8.5 streak is later recruited to the midline, where it produces somites and chordoneural hinge cells, the position of which overlaps that of border-derived cells. Therefore, the E8.5 axial progenitors that will make the tail comprise cells from two distinct sources: the border and lateral ectoderm. Furthermore, heterotopic grafts of cells from outside the border to this region also populate the chordoneural hinge. Expression of several streak- and tail bud-specific genes declines well before elongation ends, even though this late population can be successfully transplanted into earlier embryos. Therefore, at least some aspects of progenitor status are conferred by the environment and are not an intrinsic property of the cells.  相似文献   

4.
During mouse gastrulation, the primitive streak is formed on the posterior side of the embryo. Cells migrate out of the primitive streak to form the future mesoderm and endoderm. Fate mapping studies revealed a group of cell migrate through the proximal end of the primitive streak and give rise to the extraembryonic mesoderm tissues such as the yolk sac blood islands and allantois. However, it is not clear whether the formation of a morphological primitive streak is required for the development of these extraembryonic mesodermal tissues. Loss of the Cripto gene in mice dramatically reduces, but does not completely abolish, Nodal activity leading to the absence of a morphological primitive streak. However, embryonic erythrocytes are still formed and assembled into the blood islands. In addition, Cripto mutant embryos form allantoic buds. However, Drap1 mutant embryos have excessive Nodal activity in the epiblast cells before gastrulation and form an expanded primitive streak, but no yolk sac blood islands or allantoic bud formation. Lefty2 embryos also have elevated levels of Nodal activity in the primitive streak during gastrulation, and undergo normal blood island and allantois formation. We therefore speculate that low level of Nodal activity disrupts the formation of morphological primitive streak on the posterior side, but still allows the formation of primitive streak cells on the proximal side, which give rise to the extraembryonic mesodermal tissues formation. Excessive Nodal activity in the epiblast at pre‐gastrulation stage, but not in the primitive streak cells during gastrulation, disrupts extraembryonic mesoderm development.  相似文献   

5.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

6.
Orthotopic grafts of [3H]thymidine-labelled cells have been used to demonstrate differences in the normal fate of tissue located adjacent to and in different regions of the primitive streak of 8th day mouse embryos developing in vitro. The posterior streak produces predominantly extraembryonic mesoderm, while the middle portion gives rise to lateral mesoderm and the anterior region generates mostly paraxial mesoderm, gut and notochord. Embryonic ectoderm adjacent to the anterior part of the streak contributes mainly to paraxial mesoderm and neurectoderm. This pattern of colonization is similar to the fate map constructed in primitive-streak-stage chick embryos. Similar grafts between early-somite-stage (9th day) embryos have established that the older primitive streak continues to generate embryonic mesoderm and endoderm, but ceases to make a substantial contribution to extraembryonic mesoderm. Orthotopic grafts and specific labelling of ectodermal cells with wheat germ agglutinin conjugated to colloidal gold (WGA-Au) have been used to analyse the recruitment of cells into the paraxial mesoderm of 8th and 9th day embryos. The continuous addition of primitive-streak-derived cells to the paraxial mesoderm is confirmed and the distribution of labelled cells along the craniocaudal sequence of somites is consistent with some cell mixing occurring within the presomitic mesoderm.  相似文献   

7.
Gastrulation in higher vertebrate species classically commences with the generation of mesoderm cells in the primitive streak by epithelio-mesenchymal transformation of epiblast cells. However, the primitive streak also marks, with its longitudinal orientation in the posterior part of the conceptus, the anterior-posterior (or head-tail) axis of the embryo. Results obtained in chick and mouse suggest that signals secreted by the hypoblast (or visceral endoderm), the extraembryonic tissue covering the epiblast ventrally, antagonise the mesoderm induction cascade in the anterior part of the epiblast and thereby restrict streak development to the posterior pole (and possibly initiate head development anteriorly). In this paper we took advantage of the disc-shape morphology of the rabbit gastrula for defining the expression compartments of the signalling molecules Cerberus and Dickkopf at pre-gastrulation and early gastrulation stages in a mammal other than the mouse. The two molecules are expressed in novel expression compartments in a complementary fashion both in the hypoblast and in the emerging primitive streak. In loss-of-function experiments, carried out in a New-type culturing system, hypoblast was removed prior to culture at defined stages before and at the beginning of gastrulation. The epiblast shows a stage-dependent and topographically restricted susceptibility to express Brachyury, a T-box gene pivotal for mesoderm formation, and to transform into (histologically proven) mesoderm. These results confirm for the mammalian embryo that the anterior-posterior axis of the conceptus is formed first as a molecular prepattern in the hypoblast and then irrevocably fixed, under the control of signals secreted from the hypoblast, by epithelio-mesenchymal transformation (primitive streak formation) in the epiblast.Edited by D. Tautz  相似文献   

8.
Fibroblast growth factor (FGF) signaling has been shown to play critical roles in vertebrate segmentation and elongation of the embryonic axis. Neither the exact roles of FGF signaling, nor the identity of the FGF ligands involved in these processes, has been conclusively determined. Fgf8 is required for cell migration away from the primitive streak when gastrulation initiates, but previous studies have shown that drastically reducing the level of FGF8 later in gastrulation has no apparent effect on somitogenesis or elongation of the embryo. In this study, we demonstrate that loss of both Fgf8 and Fgf4 expression during late gastrulation resulted in a dramatic skeletal phenotype. Thoracic vertebrae and ribs had abnormal morphology, lumbar and sacral vertebrae were malformed or completely absent, and no tail vertebrae were present. The expression of Wnt3a in the tail and the amount of nascent mesoderm expressing Brachyury were both severely reduced. Expression of genes in the NOTCH signaling pathway involved in segmentation was significantly affected, and somite formation ceased after the production of about 15-20 somites. Defects seen in the mutants appear to result from a failure to produce sufficient paraxial mesoderm, rather than a failure of mesoderm precursors to migrate away from the primitive streak. Although the epiblast prematurely decreases in size, we did not detect evidence of a change in the proliferation rate of cells in the tail region or excessive apoptosis of epiblast or mesoderm cells. We propose that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation.  相似文献   

9.
This study characterizes defects associated with abnormal mesoderm development in mouse embryos homozygous for the induced Ednrb(s-1Acrg) allele of the piebald deletion complex. The Ednrb(s-1Acrg) deletion results in recessive embryonic lethality and mutant embryos exhibit a truncated posterior body axis. The primitive streak and node become disfigured, consistent with evidence that cell migration is impaired in newly formed mesoderm. Additional defects related to mesoderm development include notochord degeneration, somite malformations, and abnormal vascular development. Arrested heart looping morphogenesis and a randomized direction of embryonic turning indicate that left-right development is also perturbed. The expression of nodal and leftb, Tgf-beta-related genes involved in a left-determinant signaling pathway, is variably lost in the left lateral plate mesoderm. Mutational analysis has demonstrated that Fgf8 and Brachyury (T) are required for normal mesoderm and left-right development and the asymmetric expression of nodal and leftb. Fgf8 expression in nascent mesoderm exiting the primitive streak is dramatically reduced in mutant embryos, and diminished T expression accompanies the progressive loss of paraxial, lateral, and primitive streak mesoderm. In contrast, axial mesoderm persists and T and nodal appear to be appropriately expressed in their specific domains in the node and notochord. We propose that this mutation disrupts a morphogenetic pathway, likely involving FGF signaling, important for the development of streak-derived posterior mesoderm and lateral morphogenesis.  相似文献   

10.
The developmental potency of cells isolated from the primitive streak and the tail bud of 8.5- to 13.5-day-old mouse embryos was examined by analyzing the pattern of tissue colonization after transplanting these cells to the primitive streak of 8.5-day embryos. Cells derived from these progenitor tissues contributed predominantly to tissues of the paraxial and lateral mesoderm. Cells isolated from older embryos could alter their segmental fate and participated in the formation of anterior somites after transplantation to the primitive streak of 8.5-day host embryo. There was, however, a developmental lag in the recruitment of the transplanted cells to the paraxial mesoderm and this lag increased with the extent of mismatch of developmental ages between donor and host embryos. It is postulated that certain forms of cell-cell or cell-matrix interaction are involved in the specification of segmental units and that there may be age-related variations in the interactive capability of the somitic progenitor cells during development. Tail bud mesenchyme isolated from 13.5-day embryos, in which somite formation will shortly cease, was still capable of somite formation after transplantation to 8.5-day embryos. The cessation of somite formation is therefore likely to result from a change in the tissue environment in the tail bud rather than a loss of cellular somitogenetic potency.  相似文献   

11.
12.
The developmental fate of cells in the epiblast of early-primitive-streak-stage mouse embryos was assessed by studying the pattern of tissue colonisation displayed by lac Z-expressing cells grafted orthotopically to nontransgenic embryos. Results of these fate-mapping experiments revealed that the lateral and posterior epiblast contain cells that will give rise predominantly to mesodermal derivatives. The various mesodermal populations are distributed in overlapping domains in the lateral and posterior epiblast, with the embryonic mesoderm such as heart, lateral, and paraxial mesoderm occupying a more distal position than the extraembryonic mesoderm. Heterotopic grafting of presumptive mesodermal cells results in the grafted cells adopting the fate appropriate to the new site, reflecting a plasticity of cell fate determination before ingression. The first wave of epiblast cells that ingress through the primitive streak are those giving rise to extraembryonic mesoderm. Cells that will form the mesoderm of the yolk sac and the amnion make up a major part of the mesodermal layer of the midprimitive-streak-stage embryo. Cells that are destined for embryonic mesoderm are still found within the epiblast, but some have been recruited to the distal portion of the mesoderm. By the late-primitive-streak-stage, the mesodermal layer contains only the precursors of embryonic mesoderm. This suggests that there has been a progressive displacement of the midstreak mesoderm to extraembryonic sites, which is reminiscent of that occurring in the overlying endodermal tissue. The regionalisation of cell fate in the late-primitive-streak mesoderm bears the same spatial relationship as their ancestors in the epiblast prior to cell ingression. This implies that both the position of the cells in the proximal-distal axis and their proximity to the primitive streak are major determinants for the patterning of the embryonic mesoderm. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The study of axis extension and somitogenesis has been greatly advanced through the use of genetic tools such as the TCre mouse line. In this line, Cre is controlled by a fragment of the T (Brachyury) promoter that is active in progenitor cells that reside within the primitive streak and tail bud and which give rise to lineages emerging from these tissues as the embryonic axis extends. However, because TCre-mediated recombination occurs early in development, gene inactivation can result in an axis truncation that precludes the study of gene function in later or more posterior tissues. To address this limitation, we have generated an inducible TCre transgenic mouse line, called TCreERT2, that provides temporal control, through tamoxifen administration, in all cells emerging from the primitive streak or tail bud throughout development. TCreERT2 activity is mostly silent in the absence of tamoxifen and, in its presence, results in near complete recombination of emerging mesoderm from E7.5 through E13.5. We demonstrate the utility of the TCreERT2 line for determining rate of posterior axis extension and somite formation, thus providing the first in vivo tool for such measurements. To test the usefulness of TCreERT2 for genetic manipulation, we demonstrate that an early deletion of ß-Catenin via TCreERT2 induction phenocopies the TCre-mediated deletion of ß-Catenin defect, whereas a later induction bypasses this early phenotype and produces a similar defect in more caudal tissues. TCreERT2 provides a useful and novel tool for the control of gene expression of emerging embryonic lineages throughout development.  相似文献   

14.
15.
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.  相似文献   

16.
Dicer is an enzyme that processes microRNAs (miRNAs) to their mature forms. As miRNAs were first discovered for their role in the control of developmental timing, we investigated their potential requirement in mouse somitogenesis, an event with precise temporal periodicity. To address the collective role of miRNAs in mesoderm development including somite formation, we used T (Brachyury)-Cre mouse line to inactivate Dicer in most cells of the mesoderm lineage. This Dicer mutant exhibits a reduced anterior–posterior axis. Somite number remains normal in mutant embryos up until the death of the embryos more than two days after Dicer inactivation. Consistent with this, the molecular machineries required for establishing segmentation, including clock and wave front, are not perturbed. However, somite size is reduced and later-formed somites are caudalized, coincident with increased cell death. Outside of the paraxial mesoderm and prior to apparent reduction of the axis in the mutant, the position of the hindlimb bud, a lateral plate mesoderm-derived structure, is posteriorly shifted and the timing of hindlimb bud initiation is delayed accordingly. We observed changes in the expression of genes critical for limb positioning, which include a shifted and delayed downregulation of Hand2 and Tbx3, and shifted and delayed upregulation of Gli3 in the prospective limb bud field. The 3′ UTRs of both Hand2 and Tbx3 harbor target sites for a seed sequence-sharing family of miRNAs mir-25/32/92/363/367. As an example of the family we show that mir-363, a miRNA with elevated expression in the prospective limb bud field, is capable of inhibiting Hand2/Tbx3 expression in vitro in a binding site-dependent manner. Together, our findings provide the first demonstration that in mouse embryonic mesoderm, while Dicer is dispensable for somite segmentation, it is essential for proper limb bud positioning.  相似文献   

17.
During the early vertebrate body plan formation, convergent extension (CE) of dorsal mesoderm and neurectoderm is coordinated by the evolutionarily conserved non-canonical Wnt/PCP signaling. Disheveled (Dvl), a key mediator of Wnt/PCP signaling, is essential for the medial–lateral polarity formation in the cells undergoing convergent extension movements. NEDD4L, a highly conserved HECT type E3 ligase, has been reported to regulate the stability of multiple substrates including Dvl2. Here we demonstrate that NEDD4L is required for the cellular polarity formation and convergent extension in the early Xenopus embryos. Depletion of NEDD4L in early Xenopus embryos results in the loss of mediolateral polarity of the convergent-extending mesoderm cells and the shortened body axis, resembling those defects caused by the disruption of non-canonical Wnt signaling. Depletion of xNEDD4L also blocks the elongation of the animal explants in response to endogenous mesoderm inducing signals and partially compromises the expression of Brachyury. Importantly, reducing Dvl2 expression can largely rescue the cellular polarity and convergent extension defects in NEDD4L-depleted embryos and explants. Together with the data that NEDD4L reduces Dvl2 protein expression in the frog embryos, our findings suggest that regulation of Dvl protein levels by NEDD4L is essential for convergent extension during early Xenopus embryogenesis.  相似文献   

18.
The epithelial versus mesenchymal phenotypes of embryonic ectoderm and mesoderm cells of the prestreak stage pig embryos were examined by electron microscopy and molecular marker analysis. During this period the embryonic disc remained flat or slightly convex while becoming oval or pyriform in shape. Mesenchyme cells expressing vimentin were present between the embryonic disc and the underlying visceral endoderm before a primitive streak (or groove) was apparent. The migration of mesenchyme appeared to occur in lateral and posterior directions from a mass of quiescent cells located in the pointed end of the pyriform embryonic disc that expressed Brachyury; these cells are proposed to be the precursors of the primitive streak and/or form the equivalent of the mouse early gastrula organizer (EGO). Cells with the TEC-1 (or SSEA-1) epitope, the marker most frequently used to characterize pluripotent cells, were initially distributed randomly in the embryonic ectoderm and then were found to localize in an anterior crescent which may contain the precursor cells of ectoderm and neurectoderm. As mitotic figures were found only in the anterior crescent, it is proposed that at least some of these proliferating cells migrate toward the EGO. While cytokeratins were barely detectable in the embryonic ectoderm cells, vimentin expression was supposed to be associated with the migratory capacity of these cells. These findings indicate that the early step of gastrulation, migration of extraembryonic mesoderm, occurs at a prestreak stage during which the embryonic disc becomes polarized. genesis 38:13-25, 2004.  相似文献   

19.
20.

Background  

FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号