首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radical reaction of low-density lipoprotein (LDL) is a key step in atherogenesis and causes both a decrease in the sialic acid moiety and modification of apolipoprotein B-100 (apoB). Although apoB modification (cross-link and fragmentation) increases in atherosclerosis, the change in apoB-bound sialic acid in atherosclerosis is controversial. To elucidate the physiological implications of desialylation of LDL by radical reaction, the reactivity of sialic acid of LDL was compared with that of apoB, which underwent facile fragmentation in radical reactions. ApoB was determined by immunoblot analysis with anti-apoB antiserum, and the sialic acid moiety was measured by blot analysis with a biotin-bound lectin [biotin-SSA from Japanese elderberry (Sambucus sieboldiana)] specific to sialic acid. When human LDL was oxidized with Cu(2+) at 37 degrees C, apoB and apoB-attached sialic acid decreased simultaneously. Comparison of the staining bands with anti-apoB and with biotin-SSA shows that sialic acid moieties still remain on fragmented apoB proteins, indicating that the decrease in sialic acid is much slower than that of apoB fragmentation. In addition, human plasma was oxidized with 400 microM of Cu(2+) at 37 degrees C. Similar analysis indicates that the decrease in sialic acid attached to apoB also results from the fragmentation of apoB. This study indicates that the fragmentation of apoB proceeds at a much faster rate than the decrease in sialic acid content when a free radical reaction is induced in isolated LDL as well as in plasma LDL exposed to Cu(2+)-induced oxidative stress. On the basis of these results, the modification of apoB is much more sensitive than the decrease in sialic acid as an indicator of oxidative stress.  相似文献   

2.
Oxidation of low-density lipoprotein (LDL) by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been suggested to be involved in the onset of atherosclerosis. Oolong tea contains unique polyphenols including oolonghomobisflavan A (OFA). In this study, the effects of OFA on LDL oxidation by ROS and RNS were investigated in vitro. OFA suppressed formation of cholesterol ester hydroperoxides in LDL oxidized by peroxyl radical and peroxynitrite, and formation of thiobarbituric acid reactive substances in LDL oxidized by Cu2+. In addition, OFA inhibited fragmentation, carbonylation, and nitration of apolipoprotein B-100 (apo B-100) in the oxidized LDL, in which heparin-binding activity of apo B-100 was protected by OFA. Our results suggest that OFA exhibits antioxidant activity against both lipid peroxidation and oxidative modification of apo B-100 in LDL oxidized by ROS and RNS. Polyphenols in oolong tea may prevent atherosclerosis by reducing oxidative stress.  相似文献   

3.
The aim of this study was to investigate the efficiency of the pentagalloic acid compound in inhibiting the metal ions and cell lines that mediate in low density lipoprotein (LDL) oxidation. Pentagalloic acid prolonged the lag time preceeding the onset of conjugated diene formation. In chemically induced LDL oxidation by Cu2+ plus hydrogen peroxide or peroxyl radical generated by 2, 2′-azo-bis (2-amidino propane) hydrochloride (AAPH), pentagalloic acid inhibited LDL oxidation as monitored by measuring the thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), and gel electrophoretic mobility. The physiological relevance of the antioxidative activity was validated at the cellular level where pentagalloic acid inhibited mouse macrophage J774 and endothelial cell-mediated LDL oxidation. When compared with several other antioxidants, pentagalloic acid showed a much higher ability than naturally occuring antioxidants, α-tocopherol and ascorbic acid, and the synthetic antioxidant, probucol.  相似文献   

4.
It was found that glucose in the range of concentrations 12.5–100 mM stimulated Cu2+–mediated free radical peroxidation of low-density lipoproteins (LDL) from human blood plasma. Considering the kinetic parameters of LDL peroxidation we proposed that intensification of this process may be caused by formation of free radical intermediates of glucose auto-oxidation. Addition of SOD to the medium inhibited LDL oxidation, indicating the formation of superoxide anion-radicals under autoxidation of glucose. Similarly, SOD inhibited free radical peroxidation of liposomes from egg lecithin in the presence of glucose that confirms the generation of superoxide radicals under co-oxidation of unsaturated lipids and glucose. Normalization of glucose level in the blood of patients with type 2 diabetes mellitus during therapy was accompanied by a significant decrease in LDL oxidation in vivo (the decrease in primary and secondary lipoperoxidation products). The formation of superoxide anion-radicals was observed during interaction of aminoacid l-lysine with a product of glucose oxidative metabolism–methylglyoxal, but not with a product of lipoperoxidation malonyldialdehyde. In accordance with the foregoing the administration of sugar-lowering drug metformin, which binds and utilizes methylglyoxal, caused a stronger inhibition of LDL peroxidation in the blood of patients with diabetes mellitus, probably due to decrease in methylglyoxal-dependent generation of superoxide anion-radicals. Based on the results we set out the hypothesis about autocatalytic mechanism of free radical reactions involving natural dicarbonyls and suppose the common molecular mechanism of vascular wall injury in atherosclerosis and diabetes.  相似文献   

5.
Endogenous oxidized cholesterols are potent atherogenic agents. Therefore, the antioxidative effects of green tea catechins (GTC) against cholesterol oxidation were examined in an in vitro lipoprotein oxidation system. The antioxidative potency of GTC against copper catalyzed LDL oxidation was in the decreasing order (-)-epigalocatechin gallate (EGCG)=(-)-epicatechin gallate (ECG)>(-)-epicatechin (EC)=(+)-catechin (C)>(-)-epigallocatechin (EGC). Reflecting these activities, both EGCG (74%) and ECG (70%) inhibited the formation of oxidized cholesterol, as well as the decrease of linoleic and arachidonic acids, in copper catalyzed LDL oxidation. The formation of oxidized cholesterol in 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH)-mediated oxidation of rat plasma was also inhibited when the rats were given diets containing 0.5% ECG or EGCG. In addition, EGCG and ECG highly inhibited oxygen consumption and formation of conjugated dienes in AAPH-mediated linoleic acid peroxidative reaction. These two species of catechin also markedly lowered the generation of hydroxyl radical and superoxide anion. Thus, GTC, especially ECG and EGCG, seem to inhibit cholesterol oxidation in LDL by combination of interference with PUFA oxidation, the reduction and scavenging of copper ion, hydroxyl radical generated from peroxidation of PUFA and superoxide anion.  相似文献   

6.
The sialic acid content of electronegative low density lipoprotein (LDL) and LDL isolated from human aortic intima was measured. Sialic acid level in electronegative LDL of healthy subjects was 1.7-fold lower than in native LDL. Sialic acid content in electronegative LDL of coronary atherosclerosis patients was 3-fold lower than in native LDL. Lipoproteins isolated from grossly normal human aortic intima and from fatty streaks contained 20-56% less sialic acid as compared to blood plasma LDL. A negative correlation was established between the ability of electronegative and aortic LDL to stimulate lipid accumulation in cells cultured from uninvolved human aortic intima and lipoprotein sialic acid content. The results obtained indicate that electronegative and aortic LDLs have a low sialic acid content, i.e., are desialylated lipoproteins. Considered together with the fact that all known atherogenic LDLs have similar characteristics, our findings suggest that modified LDLs are the same lipoprotein particles subjected to multiple modification.  相似文献   

7.
A part of low density lipoproteins (LDL) isolated from the blood of healthy subjects and patients with coronary atherosclerosis bind to a Sepharose-linked Ricinus communis agglutinin, a lectin that interacts specifically with galactose residues. Bound LDL can be replaced by galactose, but not other saccharide constituents of the LDL molecule (mannose, glucose, N-acetylglucosamine, sialic acid). Bound LDL subfraction has a 2-3-fold lower content of sialic acid as compared with unbound LDL. The blood content of desialylated LDL in atherosclerotic patients was about 3-fold higher (1.5- to 6-fold) than in healthy subjects. Desialylated LDL induced a 2- to 4-fold more intensive accumulation of total cholesterol in cultured human aortic intimal cells. Unbound LDL had no effect on intracellular deposition of lipids. It is suggested that the subfraction of desialylated LDL may be responsible for the atherogenicity of LDL isolated from blood of atherosclerotic patients.  相似文献   

8.
Low density lipoproteins (LDL) isolated from the plasma of patients with angiographically demonstrable coronary heart disease (CHD) induced accumulation of triglycerides, free cholesterol, and cholesteryl esters in cultured macrophages, smooth muscle cells, and endothelial cells derived from uninvolved intima of human aorta, but not in skin fibroblasts or hepatoma cells. The sialic acid content of LDL from CHD patients was 40-75% lower than that from healthy donors. There was a negative correlation between LDL sialic acid content and the LDL-induced accumulation of total intracellular cholesterol. Neuraminidase treatment of LDL from normal healthy donors produced sialic acid-depleted LDL (Ds-LDL) which was able to stimulate intracellular lipid accumulation. Neuraminidase treatment of LDL from CHD patients further increased its capacity to induce intracellular lipid accumulation. Sialic acid-poor LDL isolated by affinity chromatography of LDL from CHD patients induced a 2- to 4-fold increase of free and esterified cholesterol in human intimal smooth muscle cells. Binding, uptake, and degradation of 125I-labeled Ds-LDL by macrophages and endothelial cells were 1.5- to 2-fold higher than for native LDL. Binding and uptake of Ds-LDL was inhibited 64-93% by the addition of 20-fold excess acetylated LDL (Ac-LDL); in the inverse experiment, the level of inhibition was 35-54%. These data indicate that a sialic acid-poor form of LDL isolated from CHD patients can interact with both native and scavenger LDL receptors. A sialic acid-poor form of LDL may be a naturally occurring ligand that interacts with the scavenger receptor(s) on macrophages and endothelial cells.  相似文献   

9.
We have recently established that LDL of most patients with coronary atherosclerosis differ from the LDL of most healthy subjects by the ability to cause primary atherosclerotic changes, i.e. the accumulation of intracellular cholesterol in the cells of smooth muscle origin cultured from unaffected intima of human aorta. We assumed that patients LDL is modified lipoprotein differing from native LDL by chemical composition. It has been established in the present study that patients LDL has a substantially lower content of sialic acid as compared with the LDL of healthy subjects. Desialylation of native LDL of healthy subjects with neuraminidase makes them atherogenic, therefore, capable of causing the accumulation of intracellular cholesterol similarly to patients LDL.  相似文献   

10.
Oxidized low density lipoprotein (LDL) has a major impact in the development of atherosclerosis. Risk for oxidative modification of LDL is usually determined indirectly by measuring the capability of LDL to resist radical insult. We compared three different methods quantifying the antioxidative capacity of LDL ex vivo in dyslipidemic patients with coronary heart disease. Plasma samples were obtained from two double-blinded cross-over trials. The duration of all interventions (placebo, lovastatin 60 mg/day, RRR-α-tocopherol 300 mg/day and lovastatin + RRR-α-tocopherol combined) was 6 weeks. The total radical capturing capacity of LDL (TRAP) in plasma was determined using 2,2-azobis(2,4-dimethyl-valeronitrile) (AMVN)-induced oxidation, and measuring the extinction time of chemiluminescence. TRAP was compared to the variables characterizing formation of conjugated dienes in copper-induced oxidation. Also the initial concentrations and consumption times of reduced α-tocopherol (α-TOH) and ubiquinol in AMVN-induced oxidation were determined.

Repeatability of TRAP was comparable to that of the lag time in conjugated diene formation. Coefficient of variation within TRAP assay was 4.4% and between TRAP assays 5.9%. Tocopherol supplementation produced statistically significant changes in all antioxidant variables except those related to LDL ubiquinol. TRAP increased by 57%, the lag time in conjugated diene formation by 34% and consumption time of α-TOH by 88%. When data of all interventions were included in the analyses, TRAP correlated with the lag time (r = 0.75, p < 10-6), with LDL α -TOH (r = 0.50, p < 0.001) and with the consumption time of α-TOH (r = 0.58, p < 0.0001). In the baseline data, the associations between different antioxidant variables were weaker. TRAP correlated with the lag time (r = 0.55, p < 0.001) and α-TOH consumption time (r = 0.48, p < 0.05), and inversely with apolipoprotein Al (r = -0.51, p < 0.05). Lag time at the baseline did not correlate with ubiquinol or tocopherol parameters, or with any plasma lipid or lipoprotein levels analyzed. Lovastatin treatment did not significantly affect the antioxidant capacity of LDL. In conclusion, TRAP reflects slightly different properties of LDL compared to the lag time. Thus, LDL TRAP assay may complement the other methods used to quantify the antioxidant capacity of LDL. However, TRAP and the lag time react similarly to vitamin E supplementation.  相似文献   

11.
A low sialic acid content in low density lipoprotein (LDL) has been associated with atherogenicity and coronary artery disease (CAD) in many but not all studies. We investigated associations of the sialic acid-to-apolipoprotein B (apoB) ratio of LDL with lipoprotein lipid concentrations, kinetics of LDL, metabolism of cholesterol, and the presence of CAD in 98 subjects (CAD(+), n = 56; CAD(-), n = 42). The sialic acid ratios of total, dense, and very dense LDL were lower in the CAD(+) than CAD(-) subjects, especially at high sialic acid ratios. The LDL sialic acid ratio was inversely associated with respective lipid and apoB concentrations and positively with lipid-to-apoB ratios of LDL. The transport rates (TRs) for total and dense LDL apoB were negatively associated with their sialic acid ratios. The sialic acid ratio of dense LDL, but not that of total LDL, was inversely correlated with serum levels of cholesterol precursor sterols, indicators of cholesterol synthesis, and positively with serum levels of plant sterols, indicators of cholesterol absorption. In addition, the TR for dense LDL was positively correlated with cholesterol synthesis.In conclusion, a low LDL sialic acid ratio was associated with CAD, high numbers of small LDL particles, and a high TR for LDL apoB, and in dense LDL also with high synthesis and low absorption of cholesterol.  相似文献   

12.
Oxidation of low density lipoprotein (LDL) by glucose-derived radicals may play a role in the aetiology of atherosclerosis in diabetes. Salicylate was shown to scavenge certain radicals. In the present study, aspirin, salicylate and its metabolites 2,5- and 2, 3-dihydroxybenzoic acid (DHBA) were tested for their ability to impair LDL oxidation by glucose. Only the DHBA derivatives, when present during LDL modification, inhibited LDL oxidation and the increase in endothelial tissue factor synthesis induced by glucose oxidised LDL. The LDL glycation reaction was not affected by DHBA. The antioxidative action of DHBA may be attributed to free radical scavenging and/or chelation of transition metal ions catalysing glucose autoxidation.  相似文献   

13.
S Goldstein  M J Chapman 《Biochemistry》1981,20(4):1025-1032
Radioimmunoassay techniques have been used to evaluate the contribution of the carbohydrate moiety to the immunological reactivity of human serum low-density lipoprotein (LDL). Low-density lipoprotein (d = 1.024--1.045 g/mL) was isolated from normolipidemic serum by ultracentrifugal flotation. Radioimmunoassay was performed with 125I-labeled LDL and several homologous antisera, each corresponding to different periods (1--18 weeks) of immunization and thus containing various antibody populations. Unlabeled LDL and different monosaccharides characteristic to this particle, i.e., mannose, sialic acid, glucose, N-acetylglucosamine, galactose, N-acetylgalactosamine, and fucose, were used as competitors in the binding of the labeled antigen with antibody. In the reaction with antisera corresponding to the highest antibody titer, unlabeled LDL, sialic acid, and mannose inhibited the binding of labeled LDL up to 62%, 25%, and 16%, respectively; a low degree of inhibition (some 13%) was occasionally obtained with glucose. Galactose, galactosamine, glucosamine, and fucose failed to compete with labeled LDL. Studies with antisera corresponding to different periods of immunization (2, 4, and 8 weeks) indicated that antibodies reacting with mannose appeared early (maximum 31% inhibition at 2 weeks), disappearing at 6--8 weeks; in contrast, antibodies reacting with sialic acid augmented progressively (10% inhibition at 2 weeks, 20% at 4 weeks, and 35% at the end of the immunization). These data are consistent with the conclusion that sialic acid and mannose, the terminal residues of LDL glycopeptides I and II [Swaminathan, N., & Aladjem, F. (1976) Biochemistry 15, 1516--1621], are implicated in the antigenic site(s) of LDL.  相似文献   

14.
The aim of the present study was to determine the direct effect of glucose on LDL oxidation, a key step in the development of atherosclerosis. Purified human LDL were incubated with glucose (500 mg/dl) and LDL oxidation was started by adding CuCl(2) to the media. Glucose delayed the vitamin E consumption, but accelerated the formation of conjugated dienes and increased both the formation of thiobarbituric acid reacting substances (TBARS) and LDL electrophoretic mobility. When LDL were incubated with increasing concentrations of glucose and submitted to oxidation, the formation of conjugated dienes, TBARS, and the electrophoretic mobility increased in a concentration-dependent manner. When LDL was enriched with vitamin E, it showed a delay in the formation of conjugated dienes, even in the presence of glucose. To determine whether glucose had any effect on LDL oxidation, once the process was started and vitamin E consumed, LDL were submitted to oxidation and, at different times thereafter, glucose was added into the media. Under these conditions glucose also accelerated the LDL oxidation. In summary, present results show that in LDL submitted to oxidation, glucose delays the early phases of the oxidation, slowing the vitamin E consumption, but it accelerates the rate of LDL oxidation once LDL vitamin E has been consumed; the effect being concentration-dependent.  相似文献   

15.
Hypericin and pseudohypericin are polycyclic–phenolic structurally related compounds found in Hypericum perforatum L. (St John's wort). As hypericin has been found to bind to LDL one may assume that it can act as antioxidant of LDL lipid oxidation, a property which is of prophylactic/therapeutic interest regarding atherogenesis as LDL oxidation may play a pivotal role in the onset of atherosclerosis. Therefore, in the present paper hypericin, pseudohypericin and hyperforin, an other structurally unrelated constituent in St John's wort were tested in their ability to inhibit LDL oxidation. LDL was isolated by ultracentrifugation and oxidation was initiated either by transition metal ions (copper), tyrosyl radical (myeloperoxidase/hydrogen peroxide/tyrosine) or by endothelial cells (HUVEC). LDL modification was monitored by conjugated diene and malondialdehyde formation. The data show that all compounds (hypericin, pseudohypericin and hyperforin) at doses as low as 2.5 μmol/l are potent antioxidants in the LDL oxidation systems used. The results indicate that the derivatives found in Hypericum perforatum have possible antiatherogenic potential.  相似文献   

16.
The oxidation of low density lipoprotein (LDL) by lipoxygenase has been implicated in the pathogenesis of atherosclerosis. It has been known that lipoxygenase-mediated lipid peroxidation proceeds in general via regio-, stereo- and enantio-specific mechanisms, but that it is sometimes accompanied by a share of random hydroperoxides as side reaction products. In this study we investigated the oxidation of various substrates (linoleic acid, methyl linoleate, phosphatidylcholine, isolated LDL, and human plasma) by the arachidonate 15-lipoxygenases from rabbit reticulocytes and soybeans aiming at elucidating the effects of substrate, lipoxygenase and reaction milieu on the contribution and mechanism of random oxidation and also the effect of antioxidant. The specific character of the rabbit 15-lipoxygenase reaction was confirmed under all conditions employed here. However, the specificity by soybean lipoxygenase was markedly dependent on the conditions. When phosphatidylcholine liposomes and LDL were oxygenated by soybean lipoxygenase, the product pattern was found to be exclusively regio-, stereo-, and enantio-random. When free linoleic acid was incorporated into PC liposomes and oxidized by soybean lipoxygenase, the free acid was specifically oxygenated, whereas esterified linoleate gave random oxidation products exclusively. Radical-scavenging antioxidants such as alpha-tocopherol, ascorbic acid and 2-carboxy-2,5,7,8-tetramethyl-6-chromanol selectively inhibited the random oxidation but did not influence specific product formation. It is assumed that the random reaction products originate from free radical intermediates, which have escaped the active site of the enzyme and thus may be accessible to radical scavengers. These data indicate that the specificity of lipoxygenase-catalyzed lipid oxidation and the inhibitory effects of antioxidants depend on the physico-chemical state of the substrate and type of lipoxygenase and that they may change completely depending on the conditions.  相似文献   

17.
Estrogens exert protective actions against atherosclerosis, part of these effects having been ascribed to their antioxidant properties. The aim of this work was to assess the ability of estrogens to prevent the oxidative modifications of low density lipoproteins (LDL) and other plasma lipoprotein fractions whose relationship with atherosclerosis has been less studied. For this purpose, different estrogen compounds were used: natural and synthetic estrogens, and catecholestrogens. The molecules were added in vitro to human LDL and very low density lipoproteins (VLDL) in the presence of Cu2+. The lipoprotein oxidative modifications were determined by measuring the formation of thiobarbituric acid reactive substances, the appearance of conjugated dienes and the degradation of tryptophan groups from the apoproteins. In VLDL, 2-hydroxyestradiol and diethylstilbestrol exerted potent antioxidant effects similar to those found for alpha-tocopherol and probucol. 17beta-Estradiol and 4-hydroxyestradiol also prevented VLDL oxidation, but to a lesser extent. When LDL were used, estrogens similarly exerted antioxidant actions, 2-hydroxyestradiol being the most potent inhibitor. These results show that estrogens, whose antioxidant actions have been demonstrated in other experimental models, also possess the ability to prevent in vitro the oxidative modifications of human plasma LDL and VLDL.  相似文献   

18.
Human low-density lipoprotein (LDL) is a major cholesterol carrier in blood. Elevated concentration of low-density lipoprotein, especially when oxidized, is a risk factor for atherosclerosis and other cardiac inflammatory diseases. Past research has connected free radical initiated oxidations of LDL with the formation of atherosclerotic lesions and plaque in the arterial wall. The role of LDL protein in the associated diseases is still poorly understood, partially due to a lack of structural information. In this study, LDL was oxidized by hydroxyl radical. The oxidized protein was then delipidated and subjected to trypsin digestion. Peptides derived from trypsin digestion were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identification of modified peptide sequences was achieved by a database search against apo B-100 protein sequences using the SEQUEST algorithm. At different hydroxyl radical concentrations, oxidation products of tyrosine, tryptophan, phenylalanine, proline, and lysine were identified. Oxidized amino acid residues are likely located on the exterior of the LDL particle in contact with the aqueous environment or directly bound to the free radical permeable lipid layer. These modifications provided insight for understanding the native conformation of apo B-100 in LDL particles. The presence of some natural variants at the protein level was also confirmed in our study.  相似文献   

19.
In this study we evaluated the time course and mechanism of low density lipoprotein (LDL) oxidation induced by human umbilical vein endothelial cells (HUVECs), cell-free medium (CFM) and Cu2+. After incubating LDL (200 μg/ml) with HUVECs, CFM and Cu2+ (concentration adjusted to obtain the same degree of LDL modification as with HUVECs), the extent of LDL lipid peroxidation and apoprotein B modification was monitored at different times from 0 to 24 h. This involved evaluating the time course of LDL conjugated diene, peroxide, malonyldialdehyde (MDA), fluorescence, relative electrophoretic mobility (REM), vitamin E and monounsaturated and polyunsaturated fatty acids. After incubation with HUVECs, the LDL REM was significantly higher than that obtained in CFM (p < 0.01). When balanced for the same degree of LDL modification as obtained with HUVECs, Cu2+ gave a REM similar to that obtained with HUVECs. At the different times of incubation there was no statistical difference between conjugated diene and peroxide values after incubation with HUVECs and with CFM. The values obtained with Cu2+ were significantly higher than those obtained with HUVECs and CFM (p < 0.01). MDA and LDL fluorescence were significantly higher after exposure to HUVECs than to CFM (p<0.01), values being similar to those obtained with Cu2+. There was no statistical difference between the values of LDL oleic, linoleic, arachidonic and eicosapentaenoic acids after incubation with HUVECs and CFM. Eicosatetraynoic acid (ETYA), a lipoxygenase inhibitor, determined dose-dependent reduction of MDA formation induced by the incubation of LDL with HUVECs; it did not affect LDL conjugated diene. ETYA did not have any effect on the MDA derived from LDL after incubation with Cu2+ or CFM. The results of this study demonstrate that, unlike Cu2+, the contribution of HUVECs to LDL modification does not involve only lipid peroxidation of the lipoprotein; it also includes intracellular radical and non-radical processes.  相似文献   

20.
Lin X  Xue LY  Wang R  Zhao QY  Chen Q 《The FEBS journal》2006,273(6):1275-1284
Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号