首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

2.
The effects of water stress on [1-14C]-oleic and [1-14C]-linoleic acid desaturations were studied in leaves of two varieties of cotton ( Gossypium hirsutum L.), one drought-sensitive (Reba) and the other more resistant (Mocosinho). After 24 h incorporation, [1-14C]-oleate led to the appearance of linoleate in phospholipids and, additionally, of linolenate in galactolipids. [1-14C]-Linoleate was desaturated to linolenate only in galactolipid fractions. Water stress markedly inhibited the incorporation of the precursors into the leaf lipids. The two desaturation steps were affected, particularly the transformation of linoleate to linolenate in monogalactosyldiacylglycerol in the drought-sensitive variety of cotton. The metabolic implications of the inhibition of the biosynthesis of C18-polyunsaturated fatty acids are discussed.  相似文献   

3.
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]α-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.  相似文献   

4.
Abstract– The pattern of incorporation of [3H, 1-14C]- and [3H. 2-14C]acetate into glutamate and related amino acids was studied in the brain of 10-day-old mice. A comparison of these patterns with those obtained for the adult brain led to the suggestion that the glutamate pool labelled directly by acetate is a much larger fraction of the total glutamate pool in the 10-day-old brain than it is in the adult brain.
Some data on the pattern of labelling of brain amino acids by 3-hydroxybutyrate. glucose and acetate support the hypothesis that direct carboxylation of pyruvate is somewhat more active in the immature than in the mature brain.
Differences in the labelling patterns of free and protein-bound brain amino acids by acetate, do indicate that the free amino acid pool labelled by acetate is not the precursor pool for protein synthesis.  相似文献   

5.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

6.
Abstract The biosynthesis of the positional isomers of the monounsaturated fatty acids of Methylococcus capsulatus (Bath) has been investigated by studying the incorporation of [2-14C]malonyl CoA into long-chain fatty acids in vitro. The major unsaturated products were Δ 9 16:1 and Δ 11 18:1; however, Δ 8, Δ 10 and Δ 11 16:1, as well as, Δ 10, Δ 12 and Δ 13 18:1 were also synthesized. The exclusion of O2 from the reaction vessel did not affect the synthesis of unsaturated fatty acids or the double bonds positions. Cerulenin inhibited the synthesis of unsaturated fatty acid more than saturated fatty acid. The use of both [1-14C] octanoate and [1-14C] decanoate as substrate resulted in the synthesis of long-chain fatty acids, however, unsaturates were only synthesized from octanoate. These results imply that the unique positional isomers of M. capsulatus are not synthesized by an aerobic mechanism.  相似文献   

7.
SYNOPSIS. Acetaldehyde had been shown to prevent growth of Polytomella caeca in acetate media when present at 4 mM and to depress labeling of RNA with acetate-2-14C. In order to avoid inhibition by acetaldehyde of possible malate synthase activity believed necessary for incorporation of acetate, succinate was substituted for acetate. Acetaldehyde had the same effect on growth in succinate media and labeling of RNA with succinate-2-14C as it had on utilization of acetate.  相似文献   

8.
The pattern of incorporation of label into the nucleotides of axillary bud ribonucleic acid was investigated in Pisum sativum L. cv. Meteor following the application of N 6[8-I4C]furfuryladenine or of [8-14C]adenine to the root system of decapitated plants and to cultured excised buds. When N 6[8-14C]furifaryladenine was applied to the root system label was confined to the guanine nucleotide moiety of the axillary bud ribonucleic acid; label from [8-14C]adenine was incorporated preferentially into adenine nucleotide in the molar ratio adenine nucleotide/guanine nucleotide = 3.23. When isolated buds were incubated in media containing [8-14C]adenine or N 6[8-14C]furfuryladenine, label was incorporated into both purine moieties of the ribonucleic acid. However, the relative incorporation into the guanine nucleotide fraction was considerably greater for N 6[8-I4C]furfuryladenine (adenine nucleotide/guanine nucleotide = 2.23) than for [8-14C]adenine (ratio = 4.67).
It was concluded that the pattern of metabolism of adenine to guanine and its incorporation into the guanine nucleotide moiety of pea axillary bud ribonucleic acid, is influenced by the presence of a substitution in the N 6 position of the adenine base.  相似文献   

9.
Abstract: The present study was undertaken to determine whether polyunsaturated fatty acid metabolism is affected by high glucose levels in cerebral and retinal microvascular endothelial cells. The metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 was studied in cells previously cultured for 5 days in normal (5 m M ) or high (30 m M ) glucose medium. After incubation of retinal endothelial cells with [3-14C]22:5n-3 in the high glucose condition, the formation of labeled 24:6n-3 and 22:6n-3 was increased, and that of labeled 24:5n-3 was decreased, compared with the normal glucose condition. The changes were found for fatty acids esterified in cellular lipids and those released into the medium. After incubation with [1-14C]18:2n-6, levels of all elongation/desaturation products were increased at the expense of the precursor in retinal endothelial cells cultured in high glucose medium. The changes were primarily found for esterified fatty acids, with the release of n-6 fatty acids being minor in both glucose concentrations. By contrast, high glucose levels did not affect the metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 in cerebral endothelial cells. The changes in metabolic activity of retinal endothelial cells were not reflected in the fatty acid composition. The present data suggest that high glucose can increase the desaturation process in retinal but not cerebral endothelial cells. This may produce some lipid abnormalities in retinal microvasculature and contribute to altered vascular function observed in diabetic retinopathy.  相似文献   

10.
Abstract: [1-3H, 1-14C]Palmitaldehyde(3H:14C= 15) was injected intracerebrally to 18-day-old rats and incorporation of radioactivity into brain lipids was followed over a 24-h period. The substrate was metabolized primarily by oxidation to palmitic acid with loss of tritium and, to a lesser extent, by reduction to hexadecanol. The alkyl moieties of the ethanolamine phospholipids showed considerably lower 3H:14C ratios than the substrate, indicating a substantial participation in ether lipid synthesis by tritium-free alcohols derived from 14C-labeled fatty acids. Virtually no 3H radioactivity was found in alkenyl moieties, indicating stereospecificity of both reduction of aldehyde and dehydrogenation of alkyl to alkenyl glycerolipid. The data are consistent with the general concept that plasmalogen biosynthesis proceeds exclusively through fatty alcohols and alkyl glycerolipids and that fatty aldehydes cannot be utilized directly.  相似文献   

11.
Abstract— The effect of 15 h continuous exposure to CS2 on the metaboliam of glucose and free amino acids in the brain of rats was studied. CS2 caused a moderate hypoglycaemia. There were also changes in the amounts of some amino acids in the brain. Glutamate and γ-aminobutyrate were lower whereas glutamine was markedly increased. Comparative studies in vivo of the metabolism of [2-14C]glucose and [1-14C]butyrate indicated that CS2 did not affect glycolysis or the incorporation of 14C from glucose into amino acids except into γ-aminobutyrate which was reduced. Contrary to the findings with [14C]glucose, CS2 provoked distinct changes in the labelling of amino acids when [14C]butyrate was the precursor. The most notable change was a markedly increased incorporation of 14C into glutamine. Based on the two-compartment model of brain glutamate the experimental findings indicated that CS2 affected metabolism associated with the 'small' pool of glutamate but had a minimal effect on metabolism associated with the 'large' glutamate pool. The possibility is suggested that the changes observed involved an increased rate of ammonia removal. The low incorporation of 14C into γ-aminobutyrate from either precursor is consistent with other evidence showing that CS2 interferes with pyridoxal phosphate-dependent enzymes.  相似文献   

12.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

13.
Abstract— Newborn rats were rendered hypothyroid by methimazole treatment. Incorporation of [1-14C]galactose both in vivo and in vitro into brain cerebrosides of hypothyroid rats was significantly lower than in normals. Biosynthesis of sulphatides was affected by hypothyroidism to a smaller extent than cerebrosides. Assay of cerebroside biosynthesis from [1-14C]galactose or UDP-[1-14C]galactose by brain preparations revealed that incorporation of the sugar in both cases is affected to the same extent by methimazole treatment, suggesting that the phenomenon is not due to impairment of the nucleotide biosynthesis. A radioactive galactolipid tentatively characterized as glycerogalactolipid was synthesized in vitro and its biosynthesis was reduced to a large extent in the brain preparations from hypothyroid rats. The fatty acid composition of cerebrosides and sulphatides from the brains of hypothyroid rats was found to be different from that of normal rats. The percentage of normal C24 fatty acids was significantly decreased in the methimazole-treated rats. Brain sphingomyelin fatty acids did not differ between normal and hypothyroid rats.  相似文献   

14.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

15.
The blood–brain barrier formed by the brain capillary endothelial cells provides a protective barrier between the systemic blood and the extracellular environment of the CNS. As most fatty acids in the brain enter from the blood, we examined the mechanism of oleate (C18:1) transport across primary human brain microvessel endothelial cells (HBMEC). The permeability of [1-14C]oleate was determined using confluent cells grown on Transwell® inserts in both the absence or presence of bovine serum albumin in the basolateral media, and following inhibition of various fatty acid transporters. The passage of [1-14C]oleate across confluent HBMEC monolayers was significantly enhanced when fatty acid free albumin was present in the basolateral media. The presence of the non-specific fatty acid uptake inhibitor phloretin significantly decreased [1-14C]oleate uptake by HBMEC and the subsequent release of [1-14C]oleate into the basolateral medium. Knockdown of fatty acid transport protein-1 or fatty acid translocase/CD36 significantly decreased [1-14C]oleate transport across the HBMEC monolayer from either apical as well as basolateral sides. The findings indicate that a fatty acid acceptor is a requirement for oleate transport across HBMEC monolayers. In addition, transport of oleate across HBMEC is, in part, a transcellular process mediated by fatty acid transport proteins.  相似文献   

16.
Changes during growth in the activity of several enzymes involved in purine "salvage", adenine phosphoribosyltransferase (EC 2.4.2.7), guanine phosphoribosyl-transferase (EC 2.4.2.8), hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) and adenosine kinase (EC 2.7.1.20), the enzymes which catalyze the conversion of nucleoside monophosphate to triphosphate, nucleoside monophosphate kinase (EC 2.7.4.4) and nucleoside diphosphate kinase (EC 2.7.4.6), and several degradation enzymes, deoxyribonucleae(s), ribonuclease(s). phosphatase(s), nucleosidase (EC 3.2.2.1), 3'-nucleotidase (EC 3.1.3.6) and 5'-nucleotidase (EC 3.1.3.5) were examined in cells of Catharanthus roseus (L.) G. Don cultured in suspension. In addition, the incorporation of [8-14C] adenine, [8-14C] adenine, [8-14C]hypoxanthine. [8-14C] adenosine and [8-14C]inosine into nucleotides and nucleic acids was also determined using intact cells.
The activities of all purine "salvage" enzymes examined and those of nucleoside monophosphate and diphosphate kinases increased rapidly during the lag phase and decreased during the following cell division and cell expansion phases. The rate of incorporation of adenine, guanine, hypoxanthine, and adenosine into nucleotides and nucleic acids was higher in the lag phase cells than during the following three phases. The highest rate of [8-14C]inosine incorporation was observed in the stationary phase cells. The activity of all degradation enzymes examined decreased when the stationary phase cells were transferred to a new medium.
These results indicated that the increased activity of purine "salvage" enzymes observed in the lag phase cells may contribute to an active purine "salvage" which is required to initiate a subsequent cell division.  相似文献   

17.
The role of methionine as a precursor in mugineic acid (MA) biosynthesis was studied by feeding 15N-ammonium sulfate, 14C-amino acids, and [1-14C, 15N]-methionine to iron-deficient barley roots ( Hordeum vulgare L. cv. Minorimugi), grown hydroponically. The incorporation of isotopes into amino acids was also examined. Methionine appears to be the most efficient precursor of the mugineic acid family (MAs) of phytosiderophores; homoserine was also incorporated into the MAs, but other amino acids such as glutamate, alanine, and γ-amino butyric acid did not act as precursors of MAs. Carbon-14 and 15N of methionine were incorporated into MAs. This specific incorporation of 14C and 15N indicated that the nitrogen atoms of MAs were derived from two molecules of methionine. It is suggested that deoxymugineic acid (DMA) is probably the first phytosiderophore to be synthesized on the biosynthetic pathway of MAs.  相似文献   

18.
Polyamine content and the activity of arginine decarboxylase (EC 4.1.1.19) and ornithine decarboxylase (EC 4.1.1.17) were studied with respect to meristematic activity in primary roots and in developing lateral roots of Zea mays L. (cv. Neve Ya'ar 170) seedlings. Comparative localization of active ornithine decarboxylase and of meristematic activity were determined by labelling roots either with α-[5-14C]-difluoromethyl ornithine or with [3H]-thymidine, respectively.
Lateral roots were formed during the 72 h post-decapitation period, accompanied by an initial decline in putrescine content and by a significant increase in spennidine con-tent at 48–72 h. High levels of spermidine and lower levels of putrescine were found in the primary root apex as well. A marked increase in ornithine and arginine decarboxylase activity, as measured by 14CO2 release, was found during the 72 h post-decapitation period of lateral root development. This increase in ornithine decarboxylase activity was confirmed also by a parallel rise in the incorporation of α-[5-14C]-difluoromethyl ornithine into trichloroacetic acid-insoluble fractions. Microautoradiographs of longitudinal and cross sections of roots, labelled with α-[5-14C]-difluoromethyl ornithine, showed that ornithine decarboxylase is localized mainly in the meristematic zones, as evidenced by [3H]-thymidine incorporation. A close correlation between meristematic activity and polyamines was demonstrated in situ , suggesting that polyamine content and biosynthesis may have a role in meristematic activity in corn roots.  相似文献   

19.
The ability of chloroplasts to synthesize aromatic amino acids from CO2 was investigated using highly purified, intact spinach ( Spinacia oleracea L. cv. Viking II) chloroplasts and 14CO2. Incorporation of 14C into aromatic amino acids was very low, however, and this was assumed to be due to lack of phosphoenolpyruvate (PEP), one of the substrates for the shikimate/arogenate pathway leading to aromatic amino acids in chloroplasts. Therefore, the glycolytic enzymes phosphoglycerate mutase (EC 2.7.5.3) and enolase (EC 4.2.1.11) were added to the 14CO2 fixation medium in order to convert labelled 3-phosphoglycerate exported from the intact chloroplasts to 2-phosphoglycerate and PEP. In this way a part of the glycolytic pathway was reconstituted outside the chloroplasts to substitute for the cytoplasm lost on isolation. The presence of both enzymes in the medium increased incorporation of 14C into Tyr and Phe more than ten-fold and incorporation into Trp about two-fold, while total 13CO2 fixation rates were not affected. Our results suggest that chloroplasts do not contain phosphoglycerate mutase or enolase, and that, in vivo, PEP is synthesized in the cytoplasm and imported to the chloroplast stroma for the biosynthesis of aromatic amino acids. The biosynthesis of all three aromatic amino acids was under feedback control. Using expected physiological concentrations (below 100 μ M ), each of the aromatic amino acids exerted a strict feedback inhibition of its own biosynthesis only.  相似文献   

20.
Abstract Secretion of coproporphyrin III by suspensions of Arthrobacter photogonimos and A. globiformis facilitated analysis of the paths of synthesis of δ-aminolevulinic acid, the precursor of tetrapyrroles. Sensitivity of coproporphyrin accumulation to gabaculine and incorporation of 14C from [1-14C]glutamate indicated that suspensions of A. photogonimos synthesized δ-aminolevulinic acid from glutamate by the widespread C5 pathway. In contrast, A. globiformis cells switched from predominantly the C5 pathway for δ-aminolevulinic acid synthesis in early exponential phase cultures to δ-aminblevulinic acid synthase in stationary phase cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号