首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary The expression of epidermal growth factor receptor (EGFR) was determined in cryosections of 42 human gliomas using biotinylated epidermal growth factor (B-EGF) and two monoclonal antibodies (mAb) against EGFR. All gliomas were found to express EGFR when examined with B-EGF, whereas 33 expressed EGFR when examined with the two mAbs. The highly malignant gliomas (glioblastomas and anaplastic astrocytomas) had a more heterogeneous staining pattern and a larger proportion of tumour cells staining strongly with B-EGF than did the low-grade gliomas (astrocytomas, oligodendrogliomas, mixed gliomas, and ependymomas). This indicates that high-grade gliomas contain more tumour cells rich in EGFR than do the low-grade gliomas. Reactive astrocytes, ependymal cells, and many types of nerve cells (cerebral cortical pyramidal cells, pyramidal and granular hippocampal cells, Purkinje cells, cerebellar granular cells and neurons in the molecular layer of the cerebellum) expressed EGFR, whereas small neurons and normal glial cells were not found to express EGFR.  相似文献   

2.
Perivascular astrocyte end feet closely juxtapose cerebral blood vessels to regulate important developmental and physiological processes including endothelial cell proliferation and sprouting as well as the formation of the blood‐brain barrier (BBB). The mechanisms underlying these events remain largely unknown due to a lack of experimental models for identifying perivascular astrocytes and distinguishing these cell types from other astroglial populations. Megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) is a transmembrane protein that is expressed in perivascular astrocyte end feet where it controls BBB development and homeostasis. On the basis of this knowledge, we used T2A peptide‐skipping strategies to engineer a knock‐in mouse model in which the endogenous Mlc1 gene drives expression of enhanced green fluorescent protein (eGFP), without impacting expression of Mlc1 protein. Analysis of fetal, neonatal and adult Mlc1‐eGFP knock‐in mice revealed a dynamic spatiotemporal expression pattern of eGFP in glial cells, including nestin‐expressing neuroepithelial cells during development and glial fibrillary acidic protein (GFAP)‐expressing perivascular astrocytes in the postnatal brain. EGFP was not expressed in neurons, microglia, oligodendroglia, or cerebral vascular cells. Analysis of angiogenesis in the neonatal retina also revealed enriched Mlc1‐driven eGFP expression in perivascular astrocytes that contact sprouting blood vessels and regulate blood‐retinal barrier permeability. A cortical injury model revealed that Mlc1‐eGFP expression is progressively induced in reactive astrocytes that form a glial scar. Hence, Mlc1‐eGFP knock‐in mice are a new and powerful tool to identify perivascular astrocytes in the brain and retina and characterize how these cell types regulate cerebral blood vessel functions in health and disease.  相似文献   

3.
S100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression. Here, we investigated cell density, morphological and biochemical alterations in primary cortical astrocytes from rats and C6 glioma cells cultured in high-glucose medium. Astrocytes and C6 glioma cells have a reduced content of S100B and glial fibrillary acidic protein when cultured in a high-glucose environment, as well as a reduced content of glutathione and cell proliferation rate. Although these cells have been used indistinctly to study S100B secretion, we observed a contrasting profile of S100B secretion in a high-glucose medium: a decrease in primary astrocytes and an increase in C6 glioma cells. Based on the in vitro neurotrophic effects of the S100B protein, our data suggest that chronic elevated glucose levels affect astrocyte activity, reducing extracellular secretion of S100B and that this, in turn, could affect neuronal activity and survival. Such astrocyte alterations could contribute to cognitive deficit and other impairments observed in diabetic patients.  相似文献   

4.
The activation of spinal cord glial cells has been implicated in the development of neuropathic pain upon peripheral nerve injury. The molecular mechanisms underlying glial cell activation, however, have not been clearly elucidated. In this study, we found that damaged sensory neurons induce the expression of tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and inducible nitric-oxide synthase genes in spinal cord glial cells, which is implicated in the development of neuropathic pain. Studies using primary glial cells isolated from toll-like receptor 2 knock-out mice indicate that damaged sensory neurons activate glial cells via toll-like receptor 2. In addition, behavioral studies using toll-like receptor 2 knock-out mice demonstrate that the expression of toll-like receptor 2 is required for the induction of mechanical allodynia and thermal hyperalgesia due to spinal nerve axotomy. The nerve injury-induced spinal cord microglia and astrocyte activation is reduced in the toll-like receptor 2 knock-out mice. Similarly, the nerve injury-induced pro-inflammatory gene expression in the spinal cord is also reduced in the toll-like receptor 2 knock-out mice. These data demonstrate that toll-like receptor 2 contributes to the nerve injury-induced spinal cord glial cell activation and subsequent pain hypersensitivity.  相似文献   

5.
The purpose of this work was to determine cox-1 and cox-2 expression by immunohistochemistry in forms of naturally occurring canine cancer in order to identify animal systems for pre-clinical evaluation of cox inhibitors and cox-2 inhibitors in cancer. Canine lymphoma (LSA), prostatic carcinoma (PCA), osteosarcoma (OSA), oral melanoma (MEL), oral squamous cell carcinoma (SCC), oral fibrosarcoma (FSA), mammary carcinoma (MCA), and normal tissues were included. Cox-2 was expressed in epithelial tumors (17 of 26 SCC, 8 of 13 MCA, 5 of 9 PCA cases) and MEL (9 of 15 cases), but was generally absent in normal tissues. Cox-2 expression was minimal or absent in mesenchymal tumors and LSA. Cox-1 was expressed in normal epithelial tissues and in some osteoclast and osteoblast in bone, but was absent in normal lymph node. In conclusion, forms of canine cancer were identified for in vivo studies of the effects of cox inhibitors and selective cox-2 inhibitors on cancer.  相似文献   

6.
Gliomas such as oligodendrogliomas (ODG) and glioblastomas (GBM) are brain tumours with different clinical outcomes. Histology-based classification of these tumour types is often difficult. Therefore the first aim of this study was to gain microRNA data that can be used as reliable signatures of oligodendrogliomas and glioblastomas. We investigated the levels of 282 microRNAs using membrane-array hybridisation and real-time PCR in ODG, GBM and control brain tissues. In comparison to these control tissues, 26 deregulated microRNAs were identified in tumours and the tissue levels of seven microRNAs (miR-21, miR-128, miR-132, miR-134, miR-155, miR-210 and miR-409-5p) appropriately discriminated oligodendrogliomas from glioblastomas. Genomic, epigenomic and host gene expression studies were conducted to investigate the mechanisms involved in these deregulations. Another aim of this study was to better understand glioma physiopathology looking for targets of deregulated microRNAs. We discovered that some targets of these microRNAs such as STAT3, PTBP1 or SIRT1 are differentially expressed in gliomas consistent with deregulation of microRNA expression. Moreover, MDH1, the target of several deregulated microRNAs, is repressed in glioblastomas, making an intramitochondrial-NAD reduction mediated by the mitochondrial aspartate-malate shuttle unlikely. Understanding the connections between microRNAs and bioenergetic pathways in gliomas may lead to identification of novel therapeutic targets.  相似文献   

7.
Aurora A is critical for mitosis and is overexpressed in several neoplasms. Its overexpression transforms cultured cells, and both its overexpression and knockdown cause genomic instability. In transgenic mice, Aurora A haploinsufficiency, not overexpression, leads to increased malignant tumor formation. Aurora A thus appears to have both tumor-promoting and tumor-suppressor functions. Here, we report that Aurora A protein, measured by quantitative protein gel blotting, is differentially expressed in major glioma types in lineage-specific patterns. Aurora A protein levels in WHO grade II oligodendrogliomas (n = 16) and grade III anaplastic oligodendrogliomas (n = 16) are generally low, similar to control epilepsy cerebral tissue (n = 11). In contrast, pilocytic astrocytomas (n = 6) and ependymomas (n = 12) express high Aurora A levels. Among grade II to grade III astrocytomas (n = 7, n = 14, respectively) and grade IV glioblastomas (n = 31), Aurora A protein increases with increasing tumor grade. We also found that Aurora A expression is induced by hypoxia in cultured glioblastoma cells and is overexpressed in hypoxic regions of glioblastoma tumors. Retrospective Kaplan-Meier analysis revealed that both lower Aurora A protein measured by quantitative protein gel blot (n = 31) and Aurora A mRNA levels measured by real-time quantitative RT-PCR (n = 58) are significantly associated with poorer patient survival in glioblastoma. Furthermore, we report that the selective Aurora A inhibitor MLN8237 is potently cytotoxic to glioblastoma cells, and that MLN8237 cytotoxicty is potentiated by ionizing radiation. MLN8237 also appeared to induce senescence and differentiation of glioblastoma cells. Thus, in addition to being significantly associated with survival in glioblastoma, Aurora A is a potential new drug target for the treatment of glioblastoma and possibly other glial neoplasms.  相似文献   

8.
Salvianolic acid B (SalB), a bioactive compound isolated from the plant-derived medicinal herb Danshen, has been shown to exert various anti-oxidative and anti-inflammatory activities in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of SalB in Parkinson’s disease (PD) models. To determine the neuroprotective effects of SalB in vitro, MPP+- or lipopolysaccharide (LPS)-induced neuronal injury was achieved using primary cultures with different compositions of neurons, microglia and astrocytes. Our results showed that SalB reduced both LPS- and MPP+-induced toxicity of dopamine neurons in a dose-dependent manner. Additionally, SalB treatment inhibited the release of microglial pro-inflammatory cytokines and resulted in an increase in the expression and release of glial cell line-derived neurotrophic factor (GDNF) from astrocytes. Western blot analysis illustrated that SalB increased the expression and nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The knockdown of Nrf2 using specific small interfering RNA (siRNA) partially reversed the SalB-induced GDNF expression and anti-inflammatory activity. Moreover, SalB treatment significantly attenuated dopaminergic (DA) neuronal loss, inhibited neuroinflammation, increased GDNF expression and improved the neurological function in MPTP-treated mice. Collectively, these findings demonstrated that SalB protects DA neurons by an Nrf-2 -mediated dual action: reducing microglia activation-mediated neuroinflammation and inducing astrocyte activation-dependent GDNF expression. Importantly the present study also highlights critical roles of glial cells as targets for developing new strategies to alter the progression of neurodegenerative disorders.  相似文献   

9.
Damage to the central nervous system (CNS) leads to increased production of TNF-α and TGF-β1 cytokines that have pro- or anti-inflammatory actions, respectively. To define whether astrocytes or microglia express these cytokines, prior studies have used mixed glial cultures (MGC) to represent astrocytes, thought these results are inevitably complicated by the presence of contaminating microglia within MGC. To clarify the cellular source of these cytokines, here we employed a recently described method of preparing microglia-free astrocyte cultures, in which neural stem cells (NSC) are differentiated into astrocytes. Using ELISA to quantify cytokine production in three types of glial culture: MGC, pure microglia or pure astrocytes, this showed that microglia but not astrocytes, produce TNF-α, and that this expression is increased by LPS, IFN-γ, and to a lesser extent by vitronectin, but decreased by TGF-β1. In contrast, TGF-β1 was produced by microglia and astrocytes, though at 10-fold higher levels by microglia. TGF-β1 expression in microglia was increased by vitronectin and to a lesser extent by TNF-α and LPS, but astrocyte TGF-β1 expression was not regulated by any factor tested. In summary, our data reveal that microglia, not astrocytes are the major source of TNF-α and TGF-β1 in postnatal glial cultures, and that microglial production of these antagonistic cytokines is tightly regulated by cytokines, LPS, and vitronectin.  相似文献   

10.
Up-regulation of cell cycle proteins occurs in both mitotic and post-mitotic neural cells after central nervous system (CNS) injury in adult animals. In mitotic cells, such as astroglia and microglia, they induce proliferation, whereas in post-mitotic cells such as neurons they initiate caspase-related apoptosis. We recently reported that early central administration of the cell cycle inhibitor flavopiridol after experimental traumatic brain injury (TBI) significantly reduced lesion volume, scar formation and neuronal cell death, while promoting near complete behavioral recovery. Here we show that in primary neuronal or astrocyte cultures structurally different cell cycle inhibitors (flavopiridol, roscovitine, and olomoucine) significantly reduce up-regulation of cell cycle proteins, attenuate neuronal cell death induced by etoposide, and decrease astrocyte proliferation. Flavopiridol, in a concentration dependent manner, also attenuates proliferation/activation of microglia. In addition, we demonstrate that central administration of flavopiridol improves functional outcome in dose-dependent manner after fluid percussion induced brain injury in rats. Moreover, delayed systemic administration of flavopiridol significantly reduces brain lesion volume and edema development after TBI. These data provide further support for the therapeutic potential of cell cycle inhibitors for the treatment of clinical CNS injury and that protective mechanisms likely include reduction of neuronal cell death, inhibition of glial proliferation and attenuation of microglial activation.  相似文献   

11.
Differential regulation and function of Fas expression on glial cells   总被引:8,自引:0,他引:8  
Fas/Apo-1 is a member of the TNF receptor superfamily that signals apoptotic cell death in susceptible target cells. Fas or Fas ligand (FasL)-deficient mice are relatively resistant to the induction of experimental allergic encephalomyelitis, implying the involvement of Fas/FasL in this disease process. We have examined the regulation and function of Fas expression in glial cells (astrocytes and microglia). Fas is constitutively expressed by primary murine microglia at a low level and significantly up-regulated by TNF-alpha or IFN-gamma stimulation. Primary astrocytes express high constitutive levels of Fas, which are not further affected by cytokine treatment. In microglia, Fas expression is regulated at the level of mRNA expression; TNF-alpha and IFN-gamma induced Fas mRNA by approximately 20-fold. STAT-1alpha and NF-kappaB activation are involved in IFN-gamma- or TNF-alpha-mediated Fas up-regulation in microglia, respectively. The cytokine TGF-beta inhibits basal expression of Fas as well as cytokine-mediated Fas expression by microglia. Upon incubation of microglial cells with FasL-expressing cells, approximately 20% of cells underwent Fas-mediated cell death, which increased to approximately 60% when cells were pretreated with either TNF-alpha or IFN-gamma. TGF-beta treatment inhibited Fas-mediated cell death of TNF-alpha- or IFN-gamma-stimulated microglial cells. In contrast, astrocytes are resistant to Fas-mediated cell death, however, ligation of Fas induces expression of the chemokines macrophage inflammatory protein-1beta (MIP-1beta), MIP-1alpha, and MIP-2. These data demonstrate that Fas transmits different signals in the two glial cell populations: a cytotoxic signal in microglia and an inflammatory signal in the astrocyte.  相似文献   

12.
During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.  相似文献   

13.
High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain.  相似文献   

14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a bioactive peptide with diverse activities in the nervous system. In addition to its more classic role as a neurotransmitter, PACAP functions as a neurotrophic factor. PACAP exerts these activities by binding to PACAP-selective (PAC1) or nonselective (VPAC1, VPAC2) receptors (-R). Glial cells also exhibit PACAP binding, which is associated with the increased proliferation of astrocytes. The present report demonstrates a distinct spatiotemporal regulation of PACAP, PAC1-R, VPAC1-R, and VPAC2-R expression in primary cultured rat astrocytes. To determine the role of PACAP and PAC1-R expression on glial proliferation, two in vivo models were examined--human brain tumors of glial origin and the reactive gliosis induced by a penetrating stab wound to the mature rat brain. Relative to normal human brain, PAC1-R expression is significantly upregulated in glioma, particularly oligodendrogliomas. While similar polymerase chain reaction (PCR) analysis does not detect PACAP expression, in situ hybridization studies reveal PACAP expression in a limited number of cells within the tumor. In sharp contrast, neither PACAP nor PAC1-R expression are upregulated consequent to injury. These results suggest a distinct role for PACAP and PAC1-R in glioma development and nervous system response to injury.  相似文献   

15.
Peripheral nerve injury can induce spinal microglial/astrocyte activation. Substances released by activated glial cells excite spinal nociceptive neurons. Pharmacological disruption of glial activation or antagonism of substances released by activated glia prevent or reverse pain hypersensitivity. It is not known, however, what causes spinal cord glia to shift from a resting to an activated state. In an attempt to understand the potential role of monocyte chemoattractant protein-1 (MCP-1) in triggering spinal glial activation and its contribution to the development of neuropathic pain, we investigated the effect of peripheral nerve injury on MCP-1 expression in dorsal root ganglia (DRG) and the spinal cord, and established its temporal relationship with activation of spinal microglia and astrocytes. We observed that MCP-1 was induced by chronic constriction of the sciatic nerve in DRG sensory neurons, spinal cord motor neurons and in the superficial dorsal horn, ipsilateral to the injury. Neuronal MCP-1 induction was followed by surrounding microglial activation. After peaking at day 7 after injury, MCP-1 levels began to decline rapidly and had returned to baseline by day 150. In contrast, microglial activation peaked by day 14 and declined afterwards to reach a lower, yet significantly raised level beyond day 22 and remained increased until the end of the test period. Astrocyte activation became detectable later, progressed more slowly and also remained increased until the end of the test period, in parallel with a decreased nociceptive threshold. Our results suggest that neuronal MCP-1 may serve as a trigger for spinal microglial activation, which participates in the initiation of neuropathic pain. Delayed, sustained astrocyte activation may participate with microglia in the persistent phase of pain hypersensitivity.  相似文献   

16.
In previous studies, we have demonstrated that damaged neurons within a boundary area around necrosis fall into delayed cell death due to the cytotoxic effect of microglial nitric oxide (NO), and are finally eliminated by activated microglia. In contrast, neurons in a narrow surrounding region nearby this boundary area remain alive even though they may encounter cytotoxic NO. To investigate the mechanism by which neurons tolerate this oxidative stress, we examined the in vitro and in vivo expression levels of superoxide dismutase (SOD) under pathological conditions. Results from our in situ hybridization and immunohistochemical studies showed up-regulation of Cu/Zn-SOD only in neurons outside the boundary area, whereas up-regulation of Mn-SOD was detected in both neurons and glial cells in the same region. In vitro experiments using rat PC12 pheochromocytoma and C6 glioma cell lines showed that induction of both Cu/Zn- and Mn-SOD mRNA could only be detected in PC12 cells after treatment with NO donors, while a slight induction of Mn-SOD mRNA alone could be seen in C6 glioma cells. The mechanism of resistance toward oxidative stress therefore appears to be quite different between neuronal and glial cells. It is assumed that these two types of SOD might play a critical role in protecting neurons from NO cytotoxicity in vivo, and the inability of SOD induction in damaged neurons seems to cause their selective elimination after focal brain injury.  相似文献   

17.
Astrocyte and microglia cells play an important role in the central nervous system (CNS). They react to various external aggressions by becoming reactive and releasing neurotrophic and/or neurotoxic factors. Rutin is a flavonoid found in many plants and has been shown to have some biological activities, but its direct effects on cells of the CNS have not been well studied. To investigate its potential effects on CNS glial cells, we used both astrocyte primary cultures and astrocyte/microglia mixed primary cell cultures derived from newborn rat cortical brain. The cultures were treated for 24 h with rutin (50 or 100 μmol/L) or vehicle (0.5% dimethyl sulfoxide). Mitochondrial function on glial cells was not evidenced by the MTT test. However, an increased lactate dehydrogenase activity was detected in the culture medium of both culture systems when treated with 100 μmol/L rutin, suggesting loss of cell membrane integrity. Astrocytes exposed to 50 μmol/L rutin became reactive as revealed by glial fibrillary acidic protein (GFAP) overexpression and showed a star-like phenotype revealed by Rosenfeld’s staining. The number of activated microglia expressing OX-42 increased in the presence of rutin. A significant increase of nitric oxide (NO) was observed only in mixed cultures exposed to 100 μmol/L rutin. Enhanced TNFα release was observed in astrocyte primary cultures treated with 100 μmol/L rutin and in mixed primary cultures treated with 50 and 100 μmol/L, suggesting different sensitivity of both activated cell types. These results demonstrated that rutin affects astrocytes and microglial cells in culture and has the capacity to induce NO and TNFα production in these cells. Hence, the impact of these effects on neurons in vitro and in vivo needs to be studied.  相似文献   

18.
The purpose of this study was to determine the extent to which pretreatment prostaglandin E2 (PGE2) concentration and cyclooxygenase-2 (cox-2) expression could be used to predict the antitumor activity of cox inhibitor treatment in naturally occurring canine transitional cell carcinoma of the urinary bladder (TCC). Snap frozen tissues (to measure PGE2) and formalin-fixed TCC samples (for cox-2 immunohistochemistry) were obtained by cystoscopy or surgery. Complete tumor staging was performed before and after one month of treatment with the cox inhibitor, piroxicam (0.3 mg/kg q24 h po). The pretreatment PGE2 concentration ranged from 57 to 1624 ng/g of TCC tissue; n=18 dogs). Cox-2 immunoreactivity was observed in all TCC samples. There was no association between PGE2 concentration, cox-2 expression, and change in tumor volume with piroxicam treatment. In conclusion, cox-2 expression or PGE2 concentration alone, or the combination of the two was not useful in predicting response to piroxicam treatment in canine TCC.  相似文献   

19.
Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na–K–Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.  相似文献   

20.
Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号