首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.

Background

Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation.

Methodology/Principal Findings

In this study, we focus on the role of two novel PKC isoforms, PKCδ and PKCε, in both mouse and human platelets. PKCδ is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCδ undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCε, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCε in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRγ-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor.

Conclusions

These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms δ and ε in human and mouse platelets and a selective role for PKCε in signalling through GPVI.  相似文献   

2.
The C1 domains of novel PKCs mediate the diacylglycerol-dependent translocation of these enzymes. The four different C1B domains of novel PKCs (δ, ε, θ and η) were studied, together with different lipid mixtures containing acidic phospholipids and diacylglycerol or phorbol ester. The results show that either in the presence or in the absence of diacylglycerol, C1Bε and C1Bη exhibit a substantially higher propensity to bind to vesicles containing negatively charged phospholipids than C1Bδ and C1Bθ. The observed differences between the C1B domains of novel PKCs (in two groups of two each) were also evident in RBL-2H3 cells and it was found that, as with model membranes, in which C1Bε and C1Bη could be translocated to membranes by the addition of a soluble phosphatidic acid without diacylglycerol or phorbol ester, C1Bδ and C1Bθ were not translocated when soluble phosphatidic acid was added, and diacylglycerol was required to achieve a detectable binding to cell membranes. It is concluded that two different subfamilies of novel PKCs can be established with respect to their propensity to bind to the cell membrane and that these peculiarities in recognizing lipids may explain why these isoenzymes are specialized in responding to different triggering signals and bind to different cell membranes.  相似文献   

3.
BackgroundProtein Kinase C (PKC) is a promiscuous serine/threonine kinase regulating vasodilatory responses in vascular endothelial cells. Calcium-dependent PKCbeta (PKCβ) and calcium-independent PKCeta (PKCη) have both been implicated in the regulation and dysfunction of endothelial responses to shear stress and agonists.ObjectiveWe hypothesized that PKCβ and PKCη differentially modulate shear stress-induced nitric oxide (NO) production by regulating the transduced calcium signals and the resultant eNOS activation. As such, this study sought to characterize the contribution of PKCη and PKCβ in regulating calcium signaling and endothelial nitric oxide synthase (eNOS) activation after exposure of endothelial cells to ATP or shear stress.MethodsBovine aortic endothelial cells were stimulated in vitro under pharmacological inhibition of PKCβ with LY333531 or PKCη targeting with a pseudosubstrate inhibitor. The participation of PKC isozymes in calcium flux, eNOS phosphorylation and NO production was assessed following stimulation with ATP or shear stress.ResultsPKCη proved to be a robust regulator of agonist- and shear stress-induced eNOS activation, modulating calcium fluxes and tuning eNOS activity by multi-site phosphorylation. PKCβ showed modest influence in this pathway, promoting eNOS activation basally and in response to shear stress. Both PKC isozymes contributed to the constitutive and induced phosphorylation of eNOS. The observed PKC signaling architecture is intricate, recruiting Src to mediate a portion of PKCη's control on calcium entry and eNOS phosphorylation. Elucidation of the importance of PKCη in this pathway was tempered by evidence of a single stimulus producing concurrent phosphorylation at ser1179 and thr497 which are antagonistic to eNOS activity.ConclusionsWe have, for the first time, shown in a single species in vitro that shear stress- and ATP-stimulated NO production are differentially regulated by classical and novel PKCs. This study furthers our understanding of the PKC isozyme interplay that optimizes NO production. These considerations will inform the ongoing design of drugs for the treatment of PKC-sensitive cardiovascular pathologies.  相似文献   

4.
Vitamin E isoforms have opposing regulatory effects on leucocyte recruitment during inflammation. Furthermore, in vitro, vitamin E isoforms have opposing effects on leucocyte migration across endothelial cells by regulating VCAM (vascular cell-adhesion molecule)-1 activation of endothelial cell PKCα (protein kinase Cα). However, it is not known whether tocopherols directly regulate cofactor-dependent or oxidative activation of PKCα. We report in the present paper that cofactor-dependent activation of recombinant PKCα was increased by γ-tocopherol and was inhibited by α-tocopherol. Oxidative activation of PKCα was inhibited by α-tocopherol at a 10-fold lower concentration than γ-tocopherol. In binding studies, NBD (7-nitrobenz-2-oxa-1,3-diazole)-tagged α-tocopherol directly bound to full-length PKCα or the PKCα-C1a domain, but not PKCζ. NBD-tagged α-tocopherol binding to PKCα or the PKCα-C1a domain was blocked by diacylglycerol, α-tocopherol, γ-tocopherol and retinol, but not by cholesterol or PS (phosphatidylserine). Tocopherols enhanced PKCα-C2 domain binding to PS-containing lipid vesicles. In contrast, the PKCα-C2 domain did not bind to lipid vesicles containing tocopherol without PS. The PKCα-C1b domain did not bind to vesicles containing tocopherol and PS. In summary, α-tocopherol and γ-tocopherol bind the diacylglycerol-binding site on PKCα-C1a and can enhance PKCα-C2 binding to PS-containing vesicles. Thus the tocopherols can function as agonists or antagonists for differential regulation of PKCα.  相似文献   

5.
The human mast cell lines HMC‐1560 and HMC‐1560,816 were used to study histamine release, Ca2+ signaling and protein kinase C (PKC) localization and expression, with phorbol 12‐myristate 13‐acetate (PMA). Both sublines carry activating mutations in the proto‐oncogene of c‐kit that cause autophosphorylation and permanent c‐kit tyrosine kinase activation. Both have the Gly‐560 → Val mutation but only the second carries the Asp‐816 → Val mutation. In this study, it was observed that the stimulation of PKC has different effects in HMC‐1560 and HMC‐1560,816 and this would be related to the difference in activating mutations in both mast cell lines. PKC activation increases ionomycin‐induced histamine release in HMC‐1560. This article demonstrates an opposite histamine response in HMC‐1560,816 cells, even though classical PKCs are the family of isozymes responsible for this effect in both cellular lines. Furthermore, it can be observed that upon cell stimulation with PMA, primarily cytosolic PKC translocates to the nucleous in HMC‐1560,816 cells, but not in HMC‐1560 cell line. J. Cell. Biochem. 112: 2637–2651, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

6.

Background

Protein kinase C (PKC) serves as the receptor for tumor-promoting phorbol esters, which are potent activators of conventional (c) and novel (n) PKCs. We recently showed that these activators induced selective upregulation of PKCη in breast cancer cells. The objective of this study is to understand unique regulation of PKCη and its importance in breast cancer.

Methods

The levels of PKC isozymes were monitored in breast cancer cells following treatment with inhibitors of kinases, proteasome and proteases by Western blotting. PKCε was introduced by adenoviral delivery. PKCη and PDK1 were depleted by siRNA silencing. Cell growth was determined by the MTT or clonal assay.

Results

The general PKC inhibitors Gö 6983 and bisindolylmaleimide but not cPKC inhibitor Gö 6976 led to substantial PKCη downregulation, which was partly rescued by the introduction of nPKCε. Inhibition of phosphoinositide-dependent kinase-1 (PDK1) by Ly294002 or knockdown of PDK1 also led to downregulation of basal PKCη but had no effect on PKC activator-induced upregulation of PKCη. Proteasome inhibitors blocked PKCη downregulation triggered by PDK1 inhibition/depletion but not by Gö 6983. PKCη level increased in malignant but not in non-tumorigenic or pre-malignant cells in the progressive MCF-10A series associated with activated PDK1, and knockdown of PKCη inhibited breast cancer cell growth and clonogenic survival.

Conclusion

Upregulation of PKCη contributes to breast cancer cell growth and targeting either PKCε or PDK1 triggers PKCη downregulation but involves two distinct mechanisms.

General significance

The status of PKCη may serve as a potential biomarker for breast cancer malignancy.  相似文献   

7.
Dysregulation of PKCε is involved in several serious diseases such as cancer, type II diabetes and Alzheimer's disease. Therefore, specific activators and inhibitors of PKCε hold promise as future therapeutics, in addition to being useful in research into PKCε regulated pathways. We have previously described llama single chain antibodies (VHHs) that specifically activate (A10, C1 and D1) or inhibit (E6 and G8) human recombinant PKCε. Here we report a thorough kinetic analysis of these VHHs. The inhibiting VHHs act as non-competitive inhibitors of PKCε activity, whereas the activating VHHs have several different modes of action, either increasing V(max) and/or decreasing K(m) values. We also show that the binding of the VHHs to PKCε is conformation-dependent, rendering the determination of affinities difficult. Apparent affinities are in the micromolar range based on surface plasmon resonance studies. Furthermore, the VHHs have no effect on the activity of rat PKCε nor can they bind the rat form of the protein in immunoprecipitation studies despite the 98% identity between the human and rat PKCε proteins. Finally, we show for the first time that the VHHs can influence PKCε function also in cells, since an activating VHH increases the rate of PKCε translocation in response to PMA in HeLa cells, whereas an inhibiting VHH slows down the translocation. These results give insight into the mechanisms of PKCε activity modulation and highlight the importance of protein conformation on VHH binding.  相似文献   

8.
Protein kinase C (PKC) is a family of at least 10 isozymes involved in the activation of different signal transduction pathways. The exact function of these isozymes is not known at present. Isozyme-selective inhibitors would be important to explain the function of the different PKCs and are anticipated to have pharmaceutical potential. Here we report that the small organic molecule BAS 02104951 [5-(1,3-benzodioxol-5-ylmethylene)-1-(phenylmethyl)-2,4,6(1H,3H,5H)-pyrimidinetrion], a barbituric acid derivative, inhibited PKCη and PKCε in vitro (IC(50) 18 and 36 μM, respectively). BAS 02104951 also inhibited the interaction of PKCε with its adaptor protein receptor for activated C-kinase 2 (RACK2) (IC(50) 28.5 μM). BAS 02104951 also inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Elk-1 phosphorylation in HeLa cells, translocation of PKCε and PKCη to the membrane following treatment of PC3 cells with TPA. The compound did not inhibit the proliferation of PC3 and HeLa cells. BAS 02104951 can be used as selective inhibitor of PKCε in cells not expressing PKCη and may serve as a basis for the rational development of a selective inhibitor of PKCε or PKCη, or for an inhibitor of the PKCε/RACK2 interaction.  相似文献   

9.
Previous studies demonstrated α1-adrenergic receptors (ARs) increase STAT3 activation in transfected and non-cardiac primary cell lines. However, the mechanism used by α1-ARs resulting in STAT3 activation is unknown. While other G-protein-coupled receptors (GPCRs) can couple to STAT3, these mechanisms demonstrate coupling through SRC, TYK, Rac, or complex formation with Gq and used only transfected cell lines. Using normal and transgenic mice containing constitutively active mutations (CAM) of the α1A-AR subtype, neonatal mouse myocytes and whole hearts were analyzed for the mechanism to couple to STAT3 activation. α1-ARs stimulated time-dependent increases in p-SRC, p-JAK2, and p-STAT3 in normal neonatal myocytes. Using various kinase inhibitors and siRNA, we determined that the α1A-AR coupled to STAT3 through distinct and unique pathways in neonatal myocytes. We found that PKC? inhibition decreased p-ERK and p-Ser STAT3 levels without affecting p-Tyr STAT3. In contrast, we found that PKCδ inhibition affected p-SRC and p-JAK2 resulting in decreased p-Tyr and p-Ser STAT3 levels. We suggest a novel α1A-AR mediated PKC?/ERK pathway that regulates the phosphorylation status of STAT3 at Ser-727 while PKCδ couples to SRC/JAK2 to affect Tyr-705 phosphorylation. Furthermore, this pathway has not been previously described in a GPCR system that couples to STAT3. Given cell survival and protective cardiac effects induced by PKC, STAT3 and ERK signaling, our results could explain the neuroprotective and cardiac protective pathways that are enhanced with α1A-AR agonism.  相似文献   

10.
Epidermal growth factor receptor (EGFR) signalling is initiated by the release of EGFR-ligands from membrane-anchored precursors, a process termed ectodomain shedding. This proteolytic event, mainly executed by A Disintegrin And Metalloproteases (ADAMs), is regulated by a number of signal transduction pathways, most notably those involving protein kinase C (PKC). However, the molecular mechanisms of PKC-dependent ectodomain shedding of EGFR-ligands, including the involvement of specific PKC isoforms and possible functional redundancy, are poorly understood. To address this issue, we employed a cell-based system of PMA-induced PKC activation coupled with shedding of heparin binding (HB)-EGF. In agreement with previous studies, we demonstrated that PMA triggers a rapid ADAM17-mediated release of HB-EGF. However, PMA-treatment also results in a protease-independent loss of cell surface HB-EGF. We identified PKCα as the key participant in the activation of ADAM17 and suggest that it acts in parallel with a pathway linking PKCδ and ERK activity. While PKCα specifically regulated PMA-induced shedding, PKCδ and ERK influenced both constitutive and inducible shedding by apparently affecting the level of HB-EGF on the cell surface. Together, these findings indicate the existence of multiple modes of regulation controlling EGFR-ligand availability and subsequent EGFR signal transduction.  相似文献   

11.
PKCα and PKA have crucial but opposing roles in the regulation of calcium handling within myocytes. Identification of compounds that inhibit PKCα, but not PKA, are potential therapeutic targets for the treatment of heart disease. The synthesis of indolylureas are described, and a compound displaying nanomolar inhibition towards PKCα with significant selectivity over PKA has been identified.  相似文献   

12.
13.

Background

We have shown that protein kinase Cδ (PKCδ) inhibition results in increased endothelial cell (EC) permeability and decreased RhoA activity; which correlated with diminished stress fibers (SF) and focal adhesions (FA). We have also shown co-precipitation of p190RhoGAP (p190) with PKCδ. Here, we investigated if PKCδ regulates p190 and whether PKCδ-mediated changes in SF and FA or permeability were dependent upon p190.

Methods

Protein–protein interaction and activity analyses were performed using co-precipitation assays. Analysis of p190 phosphorylation was performed using in vitro kinase assays. SF and FA were analyzed by immunofluorescence analyses. EC monolayer permeability was measured using electrical cell impedance sensor (ECIS) technique.

Results

Inhibition of PKCδ increased p190 activity, while PKCδ overexpression diminished p190 activity. PKCδ bound to and phosphorylated both p190FF and p190GTPase domains. p190 protein overexpression diminished SF and FA formation and RhoA activity. Disruption of SF and FA or increased permeability induced upon PKCδ inhibition, were not attenuated in EC in which the p190 isoforms were suppressed individually or concurrently.

General significance

Our findings suggest that while PKCδ can regulate p190 activity, possibly at the FF and/or GTPase domains, the effect of PKCδ inhibition on SF and FA and barrier dysfunction occurs through a pathway independent of p190.  相似文献   

14.
Phosphorylation of cardiac junctional and free sarcoplasmic reticulum (SR) by protein kinase C (PKC) isoforms and was investigated. Both SR and PKC were isolated from canine heart. Junctional and free SR vesicles were prepared by calcium-phosphate-loading. The substrate specificities of PKC and PKC were found to be similar in both SR fractions. A high molecular weight junctionally-associated protein was phosphorylated by PKA, PKC and an endogenous Ca2+/calmodulin-dependent protein kinase activity: the highest levels of phosphate incorporation being catalysed by the latter kinase. In addition to this high molecular weight junctionally-associated protein, PKC induced phosphorylation of 45, 96 kDa and several proteins of greater than 200 kDa in junctional SR. A protein of 96 kDa was phosphorylated by both isoforms in junctional and free SR. The major substrate for PKA, PKC, PKC and the Ca2+/calmodulin-dependent protein kinase, in both junctional and free SR, was phospholamban. Although the phosphorylation of phospholamban by PKC was activated by Ca2+, a component of this activity appeared to be independent of Ca2+. PKC-mediated phosphorylation of phospholamban was fully activated by 1 M Ca2+ whereas the Ca2+/calmodulin dependent kinase required concentrations in excess of 5 M Ca2+. In the in vitro system employed in these studies, the concentrations of either PKC or the catalytic subunit of PKA required to phosphorylate phospholamban were found to be similar. In addition, in the presence of a 15 kDa sarcolemmal-associated protein, which becomes phosphorylated upon activation of PKC in vivo, phosphorylation of phospholamban by PKC was unaffected. These results demonstrate that, although substrates for both subtypes are found in both junctional and free SR, PKC and PKC do not show differences in selectivity towards these substrates.Abbreviations Ca2+ free calcium - CaM kinase Ca2+/calmodulin-dependent protein kinase - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis(b-aminoethylether)-N,N,N,N-tetraacetic acid - FSR free sarcoplasmic reticulum - JSR junctional sarcoplasmic reticulum - PKC protein kinase C - PS phosphatidylserine - SDS sodium dodecyl sulfate - SAG 1-stearoyl-2-arachidonylglycerol - TPCK L-1-tosylamido-2-phenylethyl chloromethyl ketone - Tris/HCI tris(hydroxymethyl)aminomethane hydrochloride This work was supported by a grant (to S.K.) from the Heart and Stroke Foundation of B.C. and Yukon. The costs of publication of this article were defrayed in part by the payment of page charges This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.Recipient of a Studentship form the Heart and Stroke Foundation of Canada.  相似文献   

15.

Background

Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor αvβ3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis.

Results

Two melanoma cell lines C8161.9 and M14 both express high levels of αvβ3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an αvβ3-depenent manner. Elevated levels of PKCα and PKCδ, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed αvβ3-dependent invasion. Furthermore, over expression of Src or PKCα and PKCδ was sufficient to confer αvβ3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCα expression, but not PKCδ, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCα restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCδ primarily restored stress fibers.

Conclusion

The misregulated expression of PKCα and PKCδ and elevated Src activity in metastatic melanoma cells is required for efficient αvβ3-mediated invasion. PKCα and Src enhance αvβ3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCα influences focal adhesion formation, while PKCδ controls stress fibers.  相似文献   

16.
Spleen tyrosine kinase (Syk) is a non-receptor protein kinase present in abundance in a wide range of hematopoietic cells. Syk reportedly plays a crucial role in immune signaling in B cells and cells bearing Fcγ-activation receptors. The role of syk in osteoblastic differentiation has not been well elucidated. We report herein the role of syk in osteoblastic differentiation. We investigated the effects of two syk inhibitors on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. Expression of syk was detected in these two cell lines. Two syk inhibitors stimulated mRNA expression of osteoblastic markers (ALP, Runx2, Osterix). Mineralization of extracellular matrix was also promoted by treatment with syk inhibitors. Knockdown of Syk caused increased mRNA expression of osteoblastic markers. In addition, syk inhibitor and knockdown of Syk suppressed phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase Cα (PKCα). Our results indicate that syk might regulate osteoblastic differentiation through MAPK and PKCα.  相似文献   

17.
Previous studies demonstrated α?-adrenergic receptors (ARs) increase STAT3 activation in transfected and non-cardiac primary cell lines. However, the mechanism used by α?-ARs resulting in STAT3 activation is unknown. While other G-protein-coupled receptors (GPCRs) can couple to STAT3, these mechanisms demonstrate coupling through SRC, TYK, Rac, or complex formation with Gq and used only transfected cell lines. Using normal and transgenic mice containing constitutively active mutations (CAM) of the α(1A)-AR subtype, neonatal mouse myocytes and whole hearts were analyzed for the mechanism to couple to STAT3 activation. α?-ARs stimulated time-dependent increases in p-SRC, p-JAK2, and p-STAT3 in normal neonatal myocytes. Using various kinase inhibitors and siRNA, we determined that the α(1A)-AR coupled to STAT3 through distinct and unique pathways in neonatal myocytes. We found that PKC? inhibition decreased p-ERK and p-Ser STAT3 levels without affecting p-Tyr STAT3. In contrast, we found that PKCδ inhibition affected p-SRC and p-JAK2 resulting in decreased p-Tyr and p-Ser STAT3 levels. We suggest a novel α(1A)-AR mediated PKC?/ERK pathway that regulates the phosphorylation status of STAT3 at Ser-727 while PKCδ couples to SRC/JAK2 to affect Tyr-705 phosphorylation. Furthermore, this pathway has not been previously described in a GPCR system that couples to STAT3. Given cell survival and protective cardiac effects induced by PKC, STAT3 and ERK signaling, our results could explain the neuroprotective and cardiac protective pathways that are enhanced with α(1A)-AR agonism.  相似文献   

18.

Background

Metastatic renal cell carcinoma (RCC) is highly resistant to systemic chemotherapy. Unfortunately, nearly all patients die of the metastatic and chemoresistant RCC. Recent studies have shown the atypical PKCζ is an important regulator of tumorigenesis. However, the correlation between PKCζ expression and the clinical outcome in RCC patients is unclear. We examined the level of PKCζ expression in human RCC.

Methods

PKCζ mRNA and protein expressions were examined by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) respectively in RCC tissues of 144 patients. Cellular cytotoxicity and proliferation were assessed by MTT.

Results

PKCζ expression was significantly higher in normal than in cancerous tissues (P < 0.0001) by real-time PCR and IHC. Similarly, PKCζ expression was down-regulated in four renal cancer cell lines compared to immortalized benign renal tubular cells. Interestingly, an increase of PKCζ expression was associated with the elevated tumor grade (P = 0.04), but no such association was found in TNM stage (P = 0.13). Tumors with higher PKCζ expression were associated with tumor size (P = 0.048). Expression of higher PKCζ found a poor survival in patients with high tumor grade. Down-regulation of PKCζ showed the significant chemoresistance in RCC cell lines. Inactivation of PKCζ expression enhanced cellular resistance to cisplatin and paclitaxel, and proliferation in HK-2 cells by specific PKCζ siRNA and inhibitor.

Conclusions

PKCζ expression was associated with tumorigenesis and chemoresistance in RCC.  相似文献   

19.
20.
Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a therapeutic option for breast cancer, including the TNBC subtype.Breast cancer is a clinically heterogeneous disease and both intra and inter-tumor heterogeneities provide great challenges for developing successful therapies. Expressions (or absence thereof) of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2)/neu are widely used to clinically classify breast tumors into multiple therapeutic groups.1 The ER/PR-positive and the HER2-positive breast cancer patients could be benefited from endocrine and HER2-targeted therapies.1 However, triple-negative breast cancers (TNBCs), which represent ∼12–17% of all breast cancer,2 lack ER, PR and HER2/neu expressions2 and are not responsive to therapies targeting these receptors. Therefore, the only systemic therapy available for TNBC is chemotherapy.3 Furthermore, TNBC is associated with aggressive pathologic features like higher histology grade and mitotic index4 and often found to be associated with higher rate of metastasis and recurrence leading to limited clinical outcome.5, 6, 7, 8 Recurrence of TNBC tends to recur within a few years after successful initial treatment6, 9 and often develops metastasis to the bone, brain and lungs with poor prognosis.2, 6 Thus, identification of signaling pathways that regulate malignant progression of breast cancer subtypes, especially TNBCs, would be therapeutically important.In recent years, PKC signaling has been implicated in modulating invasion and metastasis of multiple tumors.10, 11 The PKC family consists of multiple serine/threonine kinases and the relative contribution of individual PKC isoforms during cancer progression varies due to pleiotropism.12 PKC isoforms regulate diverse cellular functions such as cell-cycle regulation, cellular survival, cell–cell communications and apoptosis.13 In particular, atypical PKC isoforms, PKCζ and atypical protein kinase C lamda/iota (PKCλ/ι), are known to be important for chemotaxis, cell polarity, migration and wound healing processes.14, 15 Aberrations in all these processes are manifested in tumor progression and metastasis.14 Consistent with these notions, recent studies indicated that atypical PKCs are associated with various human cancers.10, 11 Importantly, the PKCλ/ι gene is located at the 3q26.2 genomic region, which is most frequently amplified in human cancer16, 17, and overexpression of PKCλ/ι has been implicated in cancer development in multiple tissues including the lung,18, 19 pancreas,20 stomach,21 colon,22 esophagus,23 liver,24 bile duct,25 ovary,17 prostate26 and brain.27 Recently, few studies have been reported higher expression of PKCλ/ι in ER/PR- and HER-positive breast cancer and also in lymph node metastases.28, 29 Kojima et. al.28 showed that PKCλ/ι expression is highly induced in the ER/PR- and HER2-positive IDCs compared with ductal carcinoma in situ (DCIS) and normal breast. PKCλ/ι forms apical-junctional complexes (AJCs) with other polarity proteins such as partitioning defective 3 homolog (PAR3) and partitioning defective 6 homolog (PAR6),30, 31, 32, 33 and invasiveness of breast tumor cells was shown to be associated with loss of PKCλ/ι localization from their apical domains.28 In addition, predominant nuclear localization of PKCλ/ι in both normal and atypical ductal hyperplasia (ADH) lesions prompted the concept that PKCλ/ι might be in an inactive state in these lesions.28 However, expression and activation of PKCλ/ι in TNBCs and the functional importance of PKCλ/ι signaling in relation to invasive breast cancer progression and metastasis are very poorly understood.10, 11Here, we studied PKCλ/ι signaling during invasive progression of TNBC. We utilized expression evaluations in triple-negative IDCs as well as metastatic breast cancers of human patients, in vitro and in vivo functional assays, and global gene expression analysis of human patient samples. We concluded that PKCλ/ι signaling is an important regulator for invasion and metastatic progression of human breast cancers including triple-negative subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号