首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The introduction of alien species leads to changes in species composition and therefore the trophic structure. The highly invasive freshwater mysid Limnomysis benedeni is established and abundant in Lake Constance since 2006. Our aim was to confirm the assumption that L. benedeni feds on small particles and to identify their food web position. We examined the feeding mode and food preference of adult L. benedeni collected from the field and from laboratory feeding experiments by analysing their stomach contents. Stable isotope analyses (SIA) confirm an omnivorous feeding of L. benedeni. In laboratory growth experiments, we determined the growth of juveniles by feeding juveniles with different natural food sources. Growth was supported by natural biofilm, dreissenid biodeposited material and an algal suspension. Stomach analyses showed clearly that L. benedeni fed on small particles of both benthic and pelagic origin and fed by both filtering and grazing. Absence of high numbers of animal structures in the stomachs and SIA supported the lack of predatory impact in the field, but the mysid probably affects the nutrient cycles in the littoral. L. benedeni seems to play an important role in the trophic relations in Lake Constance and all other water bodies they invaded.  相似文献   

3.
Biodiversity is under pressure worldwide, with amphibians being particularly threatened. Stressors related to human activity, such as chemicals, are contributing to this decline. It remains, however, unclear whether chemicals exhibiting a fungicidal activity could indirectly affect tadpoles that depend on microbially conditioned leaf litter as food source. The indirect effect of fungicides (sum concentration of a fungicide mixture composed of azoxystrobin, carbendazim, cyprodinil, quinoxyfen, and tebuconazole: 100 µg/L) on tadpoles was assessed relative to leaf litter colonized by microbes in absence of fungicides (control) and a worst‐case scenario, that is leached leaf litter without microbial colonization. The quality of leaf litter as food for tadpoles of the European common frog (Rana temporaria) was characterized through neutral lipid fatty acid profiles and microbial sum parameters and verified by sublethal responses in tadpoles (i.e., feeding rate, feces production, growth, and fatty acid composition). Fungicides changed the nutritious quality of leaf litter likely through alterations in leaves’ neutral lipid fatty acid profiles (i.e., changes in some physiologically important highly unsaturated fatty acids reached more than 200%) in combination with a potential adsorption onto leaves during conditioning. These changes were reflected by differences in the development of tadpoles ultimately resulting in an earlier start of metamorphosis. Our data provide a first indication that fungicides potentially affect tadpole development indirectly through bottom‐up effects. This pathway is so far not addressed in fungicide environmental risk assessment and merits further attention.  相似文献   

4.
We tested the hypotheses that (1) plant defenses against consumers increase in the tropics, and that these differences in quality are perceived by detritivores; and (2) microbial conditioning of leaf litter is important for the feeding ecology of shredders from both geographical regions. We compared quality parameters of 8 tree species from Portugal and 8 from Venezuela. The tropical leaves were tougher, but did not differ from temperate leaves in terms of N, C: N, and polyphenols. In multiple‐choice experiments, shredders from Portugal (Sericostoma vittatum and Chaetopteryx lusitanica) and from Venezuela (Nectopsyche argentata and Phylloicus priapulus) discriminated among conditioned leaves, preferentially consuming softer leaves. In another set of experiments, all shredders preferentially fed on conditioned rather than unconditioned leaves, grew faster when fed conditioned than unconditioned leaves and fed more on temperate than tropical leaves. We conclude that leaf litter from the tropics is a low‐quality resource compared to leaves in temperate systems, because of differences in toughness, and that tropical shredders benefit from microbial colonization, as previously demonstrated for temperate systems. We suggest that leaf toughness could be one explanation for the reported paucity of shredders in some tropical streams. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
1. Leaf litter breakdown by shredders in the field is affected by leaf toughness, nutritional value and the presence of secondary compounds such as polyphenols. However, experiments involving the use of single fungal strains have not supported the assumption that leaf parameters determine food selection by shredders perhaps because of a failure to test for high consumption prior to isolation of fungal strains, overrepresentation of hyphomycetes or the potential effects of accompanying bacteria. In this study, we used bacteria‐free, actively growing fungi and oomycetes isolated from conditioned leaf litter for which a shredder had already shown high consumption rates. 2. Black alder (Alnus glutinosa) leaf litter was exposed to the littoral zone of Lake Constance in autumn, and subsamples were analysed for leaf parameters and consumption by Gammarus roeselii under standard conditions at regular intervals. On dates with a high consumption rate of the exposed leaves, 14 single strains of fungi and oomycetes were isolated, freed of bacteria and grown on autoclaved leaves. 3. Six of eight measured leaf parameters of exposed leaves were significantly correlated with Gammarus consumption rates, with high colinearity among leaf parameters hampering the identification of causal relations between leaf parameters and feeding activity. 4. When single strains of fungi and oomycetes were grown on autoclaved leaf litter, toughness of colonised leaves was always lower than in the control and the content of protein, N and P were increased. There were pronounced strain‐specific effects on leaf parameters. Consumption rates also differed significantly, with nine of fourteen isolates consumed at higher rates than controls and none proving to be a deterrent. Protein and polyphenol content were significantly correlated with consumption rates. Oomycete‐colonised leaves were consumed at similar rates but were of lower food quality than fungi‐colonised leaves. 5. We argue that direct strain‐specific attractant or repellent effects of fungi and oomycetes on consumption by G. roeselii are not important. However, we found indirect strain‐specific role operating via effects on leaf parameters.  相似文献   

6.
Plant traits are known to control litter decomposition rates through afterlife effects on litter quality. Land-use practices that modify plant traits, e.g. livestock grazing and soil fertilization, also have cascading effects on litter decomposition. However, almost all studies of these afterlife effects ignored the role of soil detritivores in the decomposition processes. We explored how the feeding activities of a macroarthropod modify microbial activity in leaf litter. Dead leaves from two grassland species, Bromopsis erecta and Potentilla verna, were collected in fertilized or unfertilized grazed plots and fertilized or unfertilized ungrazed plots. We determined how intraspecific variation in litter quality in response to sheep grazing and soil fertilization (i) influences the consumption and assimilation of leaf litter by the millipede Glomeris marginata, and (ii) affects the activity of microbial decomposers, assessed by substrate-induced respiration (SIR), in leaf litter before consumption and in faecal pellets and litter remains processed by Glomeris under all treatments. In the absence of millipedes, microbial activity was significantly higher in leaf litter from fertilized plots. Glomeris consumed larger amounts of leaf litter from fertilized grazed plots, owing to increased consumption of the otherwise poorly palatable Bromopsis, and produced larger amounts of faecal pellets when fed on this food. However, irrespective of the food consumed, SIR in faecal pellets was found to be similar in all treatments. Moreover, SIR in litter remains unconsumed at the end of the experiment was reduced to low and similar levels in all treatments. Overall, homogenization of microbial activity by Glomeris suppressed differences in SIR between leaf litter from fertilized and unfertilized plots, in both Bromopsis and Potentilla. Our results suggest that studies that assess afterlife effects of plant traits on decomposition using methods that exclude soil macrofauna may prove inadequate in ecosystems with abundant populations of detritivores.  相似文献   

7.
Both the absence of leaf shredding macroinvertebrates and low microbial activity are of major importance in determining slow and incomplete leaf decay in extremely acidic (pH<3.5) mining streams. These streams are affected by a heavy ochre deposition causing the formation of massive iron plaques on leaf surfaces that hinder microbial exploitation. An investigation was carried out to determine whether iron plaques and leaf conditioning status (acid conditioned with and without iron plaques, neutral conditioned, unconditioned) affect the feeding preference of the shredder Gammarus pulex (L.). Leaf respiration rates and fungal biomass (ergosterol contents) were measured to determine microbial colonization. Neutral conditioned leaves had significantly higher microbial colonization than acid conditioned leaves with iron plaques. Notwithstanding, leaves of both conditioning types were consumed at high rates by G. pulex. The microbial colonization had no influence on feeding preference in the experiment. It is presumed that iron adsorbed organic material caused the high palatability of leaves with iron plaques. The results indicate that the large deposits of leaves coated with iron plaques will be available to the stream food web when water quality will be restored to neutral as planed in scenarios for the future development of mining streams.  相似文献   

8.
  • 1 The direct effect of sunlight on the conditioning, breakdown and incorporation of leaf litter in stream food webs has not yet been considered. The aim here was to evaluate the effects of light intensity on the colonization of leaf litter by microorganisms and its resulting quality as food for the stonefly shredder Klapopteryx kuscheli.
  • 2 Leaf litter was conditioned for 2 months in an open reach of a second‐order stream in litter bags either exposed to or shaded from direct sunlight. Subsequently, we performed laboratory experiments to test larval consumption, growth, growth efficiency and feeding preference fed on both leaf litter treatments.
  • 3 Leaf litter in the unshaded treatment had three times more chlorophyll‐a (Chl‐a) than that in the shaded treatment, 50% lower fungal biomass and similar bacterial abundance. Although larvae did not prefer either food and fed at the same rate on both leaf litter treatments, they grew twice as fast on the shade‐conditioned leaves and attained a two‐fold higher growth efficiency.
  • 4 Sunlight can have significant effects on detritus‐based food webs. Riparian modification induced by human activities in forested catchments increases the potential for sunlight to influence detritus dynamics.
  相似文献   

9.
Effects of feeding by atyid shrimp, Caridina weberi, on the rate of decomposition of leaf litter were studied in the Opunohu River, Moorea, French Polynesia. In a laboratory feeding experiment shrimp consumed microbially conditioned Hibiscus leaves, but in a field study shrimp did not affect the rate of decomposition of leaf litter. In this system, the rate of decomposition was influenced more by water discharge or by microbial activity than by shrimp.  相似文献   

10.
李茜  刘增文  米彩红 《生态学报》2012,32(19):6067-6075
通过采集树木枯落叶与土壤进行室内混合分解培养试验,研究了黄土高原常见的樟子松和落叶松与其他树种枯落叶混合分解对土壤性质的影响及存在的相互作用,从而为不同树木种间关系的探索和该地区人工纯林的混交改造提供科学指导。结果表明:12种枯落叶单一分解均明显提高了土壤脲酶(54%—110%)、脱氢酶(85%—288%)和磷酸酶(81%—301%)活性以及有机质(29%—55%)和碱解N(12%—49%)含量,但对土壤速效P含量和CEC的影响存在较大差异。综合而言,樟子松分别与白桦、刺槐、白榆、柠条和落叶松枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与小叶杨、沙棘、紫穗槐、侧柏和辽东栎枯落叶混合分解在对土壤性质的影响中存在相互抑制作用;落叶松分别与刺槐、白桦、小叶杨和紫穗槐枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与柠条、侧柏、辽东栎、沙棘、油松和白榆枯落叶混合分解在对土壤性质的影响中存在相互抑制作用。  相似文献   

11.
The feeding ecology of mangrove sesarmid crabs in Peninsular Malaysia was investigated by field and laboratory experiments using four mangrove leaf species (Avicennia officinalis, Bruguiera gymnorrhiza, B. parviflora and Rhizophora apiculata) and leaves of different condition (fresh and senescent). Leaves tethered on strings at high (Bruguiera zone) and low (Rhizophora zone) intertidal positions, both upstream (Sungai Pasir) and downstream (Lower Merbok) showed significant amounts of leaf litter removal in 24 h (mean 79±3% initial dry mass). Significantly more B. gymnorrhiza was consumed in Bruguiera zones and significantly less senescent A. officinalis in the upstream Rhizophora zone. In Bruguiera zones, significant numbers of leaves were taken down burrows but there were no preferences for leaf species or condition of leaf taken down burrows at all sites. In 24 h, under laboratory conditions, the sesarmid crabs Sesarma (Perisesarma) eumolpe and S. (Perisesarma) onychophorum were offered with a mangrove species choice of either fresh or senescent leaves. There was no difference in mangrove species taken when the leaves were senescent for both crab species, but when the leaves were fresh, significantly more A. officinalis leaves were consumed by both sesarmid crab species. S. onychophorum ate significantly more B. parviflora than did S. eumolpe. The crab distribution in the field was related to the preferred tree species dominance, indicating that tree species may be important for crab species distribution, or vice versa. The mean rate of leaf consumption was not significantly different between the crab species; S. eumolpe was 29.9±5.9 and S. onychophorum was 35.3±7.2 mg dry mass per wet mass gram of crab in 24 h. Rhizophora spp. were the least preferred species in all feeding experiments, a finding which may have implications for ecosystem functioning in monoculture rehabilitation projects.  相似文献   

12.
The colonization of deciduous leaf litter by aquatic invertebrates was studied at Scott Lake in Algonquin Park, Ontario, Canada. Deciduous leaf packs were colonized after only 2 days submergence. The invertebrate community was dominated by chironomids (25–94% depending on sampling period), and to a lesser extent by oligochaetes, turbellarians, and mayflies. Collectors, such as the chironomids Dicrotendipes, Pseudochironomus, Paratanytarsus and Parakiefferiella were the dominant functional-feeding group suggesting that leaf litter is being used as habitat rather than a direct food source. Deciduous leaf litter lost a substantial amount of weight, due to leaching, after only 48 h submergence. Fall-shed beech (Fagus grandifolia) leaves decomposed more rapidly than fall-shed sugar maple (Acer saccharum) leaves with daily processing coefficients (k), determined using an exponential decay model, of 0.0058 and 0.0039, respectively. Conversely, conditioned maple leaves, defined as leaves remaining on the ground over winter, were processed faster than conditioned beech leaves, with coefficients of 0.0042 and 0.0014, respectively. It is speculated that inhibitory compounds have been leached from the maple leaves, allowing for faster leaf processing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.

Background

Recent studies suggested that the earthworm Lumbricus terrestris might act as a seedling predator by ingesting emerging seedlings, and individuals were observed damaging fresh leaves of various plant species in the field. To evaluate the significance of herbivore behavior of L. terrestris for plant and earthworm performance we exposed 23- to 33-days-old seedlings of six plant species to earthworms in two microcosm experiments. Plants belonged to the three functional groups grasses, non-leguminous herbs, and legumes. Leaf damage, leaf mortality, the number of leaves as well as mortality and growth of seedlings were followed over a period of up to 26 days. In a subset of replicates 0.1 g of soil surface litter of each of the six plant species was provided and consumption was estimated regularly to determine potential feeding preferences of earthworms.

Results

There was no difference in seedling growth, the number of live seedlings and dead leaves between treatments with or without worms. Fresh leaves were damaged eight times during the experiment, most likely by L. terrestris, with two direct observations of earthworms tearing off leaf parts. Another nine leaves were partly pulled into earthworm burrows. Lumbricus terrestris preferred to consume legume litter over litter of the other plant functional groups. Earthworms that consumed litter lost less weight than individuals that were provided with soil and live plants only, indicating that live plants are not a suitable substitute for litter in earthworm nutrition.

Conclusion

Our results demonstrate that L. terrestris damages live plants; however, this behavior occurs only rarely. Pulling live plants into earthworm burrows might induce microbial decomposition of leaves to make them suitable for later consumption. Herbivory on plants beyond the initial seedling stage may only play a minor role in earthworm nutrition and has limited potential to influence plant growth.  相似文献   

14.
Feeding plasticity of two detritivore-shredders   总被引:7,自引:0,他引:7  
1. The feeding preferences of the trichopteran shredder Sericostoma personatum Spence and the amphipod shredder Gammarus pulex L. were studied using specimens collected in a springbrook where the major food source was beech litter (Fagus sylvatica L.). Six food items were tested: conditioned beech leaves, conditioned alder leaves (Alnus glutinosa L.), conditioned Sitka spruce needles [Picea sitchensis (Bong.) Carr], fresh beech leaves, a fresh macrophyte (Potamogeton perfoliatus L.) and a fresh filamentous green alga (Microspora sp.). 2. The overall preference pattern shown by the two shredders was the same: both preferred conditioned Alnus most, followed by fresh Microspora. The least preferred food items were conditioned Fagus leaves and Picea needles. 3. The feeding preference of the two shredders proved to be unrelated to food source fibre content, toughness, total phosphorus, C:N ratio and total nitrogen (P>0.05). 4. Despite the overall similarity in their feeding preferences, Gammarus was more selective than Sericostoma. The reason for this difference is discussed. 5. We interpret our findings as indicating that detritivore-shredders do not per se prefer leaf litter, but in fact actively select other food items such as filamentous green algae or macrophytes, even when terrestrial leaf litter is abundant. Most shredders in Danish forest streams thus seem to live on a growth-limiting food resource that they do not prefer. This may have important implications for secondary production in such streams.  相似文献   

15.
Leaf litter plays a critical role in regulating ecological functions in headwater forest streams, whereas the effects of leaves on water quality in urbanized streams are not fully understood. This study examined the potential importance of leaf litter for the release and transformations of organic carbon and nutrients in urban streams, and compared the effects with other types of natural organic substrates (periphyton and stream sediment). Nutrients and organic carbon were leached from senescent leaves of 6 tree species in the laboratory with deionized water, and maximal releases, leaching rate constants, composition and bioavailability of the leached dissolved organic carbon (DOC) were determined. Stream substrates (leaf debris, rocks with periphyton, and sediment) were seasonally collected from urban and forest reference streams of the NSF Baltimore Long-term Ecological Research Site and incubated with overlying stream water to estimate areal fluxes of DOC and nitrogen. Leaf litter leaching showed large ranges in maximal releases of DOC (7.0–131 mg g?1), dissolved organic nitrogen (DON; 0.07–1.39 mg g?1) and total dissolved phosphorus (TDP; 0.14–0.70 mg g?1) among tree species. DOC leaching rate constants, carbon to nitrogen ratios, and DOC bioavailability were all correlated with organic matter quality indicated by fluorescence spectroscopy. Results from substrate incubation experiments showed far higher DOC and DON release and nitrate retention with leaf debris than with sediment, or rocks with periphyton. DOC release from leaf debris was positively correlated with stream nitrate retention at residential and urban sites, with the highest values observed during the fall and lowest during the summer. This study suggests the potential importance of leaf litter quantity and quality on fostering DOC and nutrient release and transformations in urban streams. It also suggests that species-specific impacts of leaves should be considered in riparian buffer and stream restoration strategies.  相似文献   

16.
The mysid Limnomysis benedeni, one of the most important ponto-caspian invaders, was found in Lake Constance (southern Germany) in 2006. As part of larger studies to evaluate the effects of L. benedeni on the ecosystem, we studied its life-cycle strategies over an entire seasonal cycle in intervals of 3–5 weeks, addressing factors (predation, temperature) which we expected to be most important triggers of the observed changes. The size class distribution and the reproductive pattern indicated that the life cycle of L. benedeni changes seasonally. During winter (November to March), the mysid invested energy in growth and delayed reproduction until April, when the population was dominated by adults. In summer (June to September), the adults reproduced at a smaller body size and the population was disproportionately dominated by juveniles. In a mesocosm experiment that excluded fish predators, the mysids followed the same seasonal patterns of growth and energy investment as in the field population, but the size class distribution differed. Even in summer, the population in the mesocosm was dominated by adults. Stomach analyses of fish showed that L. benedeni is preyed upon by juvenile Perca fluviatilis, which fed size selectively on larger mysids. In conclusion, our results suggest predation was the reason for the dominance of juveniles and the observed size class distribution in summer. In contrast, the smaller adults in summer were most likely a physiological adaptation, perhaps evolved to avoid predation or as a reaction on metabolic losses at higher temperatures.  相似文献   

17.
Summary The hypothesis of this study was that tannins from Chinese tallow leaves have a negative effect upon terrestrial and aquatic reducer organisms and thereby may affect the overall rate of tallow litter decomposition. Species diversity and population size of aquatic reducers was lower in forest than adjacent grassland ponds; litter bags showed no difference in weight loss between bags which excluded reducers and those which did not. Differences in physical factors between habitats did not explain the paucity of reducers although rainfall permitted emigration of grassland organisms to forest ponds, yielding a temporary decrease in diversity.Tannin concentration in ephemeral ponds was altered by rainfall but leaching from leaves and soil continuously maintained tannin in ponds. Laboratory experiments showed that tannin was not directly toxic but inhibition of feeding caused high mortality in Asellus militaris and Crangonyx shoemackerii.Population density and reproduction of the terrestrial reducer (Armadillidium vulgare) was asynchronous with autumn leaf fall. Ground, leached leaves were consumed at much greater rate in laboratory experiments than unground, unleached leaves; in addition, mortality from starvation on the latter was high. These results suggest tallow leaves are not utilized by reducers until tannins are leached and the physical structure altered by rainfall and/or microbial action. Aquatic reducers are relatively unimportant in processing autumn leaf fall due to continual tannin leaching into ephemeral ponds from surrounding soil. Physical and microbial condition of leaves and leaching of tannin preceed spring and summer utilization by terrestrial isopods.  相似文献   

18.
With regard to possible detrimental effects of human and veterinary antibiotics in the aquatic environment, most research in this field assesses direct impacts of pharmaceuticals on vertebrate or invertebrate test organisms. Another related area of concern is the possible development of antibiotic-resistant bacteria by introducing antimicrobials into the aquatic compartment. However, indirect effects of antibacterials on the trophic cascade have rarely been investigated. This study contributes with an example of how indirect effects of antibiotics on leaf litter decay can be measured and to what extent shredder organisms might be affected. Results from food-selection experiments using Gammarus pulex (Amphipoda) demonstrated clear preferences for leaves conditioned in the absence versus those conditioned in the presence of two antibiotics, oxytetracycline and sulfadiazine. Although this result suggested that microbial and fungal colonisation during leaf litter conditioning might be adversely affected in the antibiotic-treated groups, analyses of total carbon and nitrogen content of conditioned leaf discs did not reveal differences among the treatments.  相似文献   

19.
Four species of riparian vegetation (alder, birch, willow and poplar) were fertilized with nitrogen, phosphorus, nitrogen + phosphorus, or no fertilizer (control). The resulting leaf detritus (leached but not microbially colonized) was offered to a stream shredder, Hydatophylax variabilis (Trichoptera: Limnephilidae). In one experiment, shredder consumption of leaf detritus from different nutrient treatments (within tree species) was compared, and in a second experiment, consumption of different tree species (within nutrient treatments) was compared. Larvae preferred leaf detritus from nitrogen + phosphorus treatments (except in poplar where nitrogen treatment was preferred). Alder was preferred over other tree species for all treatments. Chemical and physical analyses of leaf litter showed differences between tree species and nutrient treatments in nutrient content, tannins and leaf toughness. Leaf consumption by larvae was positively associated with nitrogen content and negatively associated with condensed tannin content. Species composition and nutrient status of riparian vegetation may strongly influence detrital food webs in streams.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号