首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of a collagenase inhibitor by gingival fibroblasts in culture   总被引:1,自引:0,他引:1  
Human collagenase was inhibited by test solutions of human gingival fibroblast culture media. The fibroblast-derived collagenase inhibitor was only slightly affected by 10 micrograms trypsin but was inactivated with 100 micrograms trypsin. The chaotropic agent KSCN (3 M) completely inactivated the inhibitor, whereas the thiol-blocking reagent, p-aminophenylmercuric acetate, partially inactivated the inhibitor. Inhibitory activity was retained at 60 degrees C but was abolished at 100 degrees C. Following ammonium sulfate fractionation, the fibroblast inhibitor was recovered in the supernatant at concentrations of at least 70% saturation. It is suggested that collagenase latency in soft connective tissues may derive from a collagenase-inhibitor complex formed by interaction of collagenase and a fibroblast-derived inhibitor.  相似文献   

2.
A monospecific rabbit anti-inhibitor serum did not cross-react with either intact latent collagenase or with the one pretreated by p-aminophenylmercuric acetate. Furthermore, immunoglobulin G purified from the antiserum quantitatively inhibited the anti-collagenolytic activity of the inhibitor in either the presence or absence of p-aminophenylmercuric acetate. But the immunoglobulin G did not affect latent collagenase at all. These facts, along with other lines of evidence, strongly support the possibility that the inhibitor may not be responsible for the latency of collagenase and allow us to propose a dual regulatory mechanism of collagenase activity; that is, an inactive form, per se, may thus be additionally kept in the inactive state by the existence of an inhibitor which is synthesized in the same pulp tissues.  相似文献   

3.
Bone explants from foetal and newborn rabbits synthesize and release a collagenase inhibitor into culture media. Inhibitor production in the early days of culture is followed first by latent collagenase and subsequently active collagenase in the culture media. A reciprocal relationship exists between the amounts of free inhibitor and latent collagenase in culture media, suggesting strongly that the inhibitor is a component of the latent form of the enzyme. Over 90% of the inhibitory activity of culture media is associated with a fraction of apparent mol.wt. 30000 when determined by gel filtration on Ultrogel AcA 44. The inhibitor blocks the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. It inhibits the action of either active collagenase or latent collagenase activated by 4-aminophenylmercuric acetate. Latent collagenase activated by trypsin is usually much less susceptible to inhibition. The activity of the inhibitor is destroyed by heat, by incubation with either trypsin or chymotrypsin and by 4-aminophenylmercuric acetate. Collagenase activity can be recovered from complexes of enzyme (activated with 4-aminophenylmercuric acetate) with free inhibitor by incubation with either trypsin or 4-aminophenylmercuric acetate, at concentrations similar to those that activate latent collagenase from culture media. The rabbit bone inhibitor does not affect the activity of bacterial collagenase, but blocks the action of collagenases not only from a variety of rabbit tissues but also from other mammalian species.  相似文献   

4.
The activation of latent pig synovial collagenase   总被引:4,自引:0,他引:4  
Latent pig synovial collagenase (EC 3.4.24.7) can be activated by a variety of different treatments to give an active enzyme form of lower molecular weight which rapidly degrades collagen. Trypsin and plasmin effectively activated the latent collagenase whilst elastase and cathepsin G degraded most of the latent enzyme before it was activated. A number of mercurials were compared and maximum activation was achieved using 4-aminophenylmercuric acetate and phenylmercuric chloride. The latent collagenase bound to a mercurial-Sepharose column and was eluted in the active form with NaCl. The latent collagenase also activated spontaneously and the conditions which encouraged and prevented this activation were studied. High NaCl concentration, diisopropylphosphofluoridate, soybean trypsin inhibitor, low Zn2+ concentration and high and low pH all prevented the spontaneous activation of latent pig synovial collagenase.  相似文献   

5.
Human skin procollagenase has been isolated, in pure form, from the medium of fibroblasts cultured in the presence or absence of added serum. Purification was achieved using a combination of cation-exchange (phosphocellulose or carboxymethylcellulose) and gel-filtration chromatography. Two forms (60 000 and 55 000 daltons) of the procollagenase were detected by electrophoresis in sodium dodecyl sulfatepolyacrylamide gels and could be separated by chromatography on Ultrogel AcA-44. Each form was converted to active enzyme by trypsin, producing species of 50 000 and 45 000 daltons, respectively. An autoactivation process also occurred, which yielded active enzyme without a detectable change in molecular weight. Procollagenase also was found in organ cultures of human skin but only when serum was added to the medium. This suggests that a serum-inhibitable proteolytic system is present in these cultures which, like trypsin, converts procollagenase to the active enzyme forms that can be isolated from serum-free organ culture medium. The collagenase species obtained from either fibroblast or organ culture medium were chromatographically and electrophoretically identical.  相似文献   

6.
We have isolated an activator of collagenase from medium conditioned with articular cartilage. The activity is contained in an acidic protein appearing as a doublet band of Mr 57,000 and 56,000 on sodium dodecyl sulfate polyacrylamide gels. Both components of the doublet have identical isoelectric points as demonstrated by gel electrophoresis. Purified synovial collagenase has a high dependence on the presence of this factor for activity. Other known activators of latent proteolytic enzymes such as trypsin and mercurials will stimulate collagenase but only if activator protein is present. The activator protein is itself a latent metalloprotease because in the presence of p-aminophenylmercuric acetate and calcium it will digest casein. The caseinase activity and collagenase activation activity have identical heat inactivation profiles, both being stable to a temperature of 60 degrees C and partially inactivated at 80 degrees C. The synthesis of the activator is localized in the superficial zone of articular cartilage.  相似文献   

7.
Three human matrix degrading leukocyte proteinases, type I collagenase, gelatinase and a new type IV collagenase were isolated in latent and active form. Activation of all three latent enzymes could be achieved by treatment with either organomercurials or with trypsin. In addition the 90 kDa latent type I-collagenase could be activated by disulfides, while a newly discovered 70 kDa latent form could be activated with organomercurials or with trypsin. The active type I collagenase was inhibited by gamma-anticollagenase from human serum (and the leukocyte type I collagenase inhibitor, while the newly found type IV collagenase was inhibited only partially. The complexes formed from gamma-anticollagenase with type I collagenase, i. e. latent enzyme, are not reactive site associated complexes. The binding is not of a substrate-like and competitive manner. After inhibition of the enzyme though inactive against its natural substrates it is still hydrolyzing the synthetic low molecular weight octapeptide DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg-OH.  相似文献   

8.
The organ culture of neonatal mouse calvaria produced both collagenase and collagenase inhibitor. The inhibitor was purified by a series of column chromatographies: DEAE-cellulose and CM-cellulose ion-exchange chromatography, concanavalin A-Sepharose and heparin-Sepharose affinity chromatography, and finally by Sephacryl S-200 gel filtration. The purified inhibitor migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had a molecular mass of 28,000. The inhibitor was purified 140-fold to a specific activity of 163 units/mg with a yield of 18% over the first step of the purification by DEAE-cellulose chromatography. The inhibitor stained positively for carbohydrate with periodic acid-Schiff's reagent indicating, in conjunction with its affinity to concanavalin A, that the inhibitor is a glycoprotein. In addition to mouse bone collagenase, this inhibitor also inhibited chick bone, rat bone, rabbit corneal, and human gingival collagenase, but did not inhibit bacterial collagenase.  相似文献   

9.
Latent and active collagenase were demonstrated following direct extraction from normal skin homogenates with 0.1M calcium chloride at 60 degrees C. 83% of the collagenase activity was in latent form and could be maximally activated with trypsin. Partial activation of the latent enzyme could also be demonstrated by incubation of the skin extract without added trypsin. This endogenous activation was inhibited by the addition of soya bean trypsin inhibitor, trasylol, di-isopropylphosphofluoridate and phenylmethanesulphonylfluoride, none of which inhibited collagenase directly. This suggests that the skin extracts contain a collagenase activating enzyme with the inhibition profile of a serine proteinase. A chymotryptic proteinase with a similar inhibition profile was extracted from normal human skin and partially purified. This enzyme activated fibroblast procollagenase derived from tissue culture of normal skin. The procollagenase was also partially activated by plasmin and chymotrypsin. This is the first demonstration of a collagenase activating enzyme in human skin and raises the possibility that collagenase activation by this mechanism may be responsible for collagen degradation in some disease processes.  相似文献   

10.
1. A latent collagenase, activated only by limited proteolysis, was found in culture media of mouse bone explants. It could be activated by trypsin or, less efficiently, by chymo-trypsin. Skin explants also released latent collagenase. 2. Bone collagenase attacks native collagen at about neutral pH when it is in solution, in reconstituted fibrils or in insoluble fibres, producing two fragments representing 75 and 25% of the molecule. It requires calcium and is inhibited by EDTA, cysteine or serum. 3. Latent collagenase is not activated by trypsin-activated collagenase but by a distinct unidentified thermolabile agent present in a latent trypsin-activatable state in the culture media, or by purified liver lysosomes between pH5.5 and pH7.4. Trypsin activation decreases the molecular weight of latent collagenase from 105000 to 84000 as determined by gel filtration. 5. The latency of collagenase is unlikely to be due to an enzyme-inhibitor complex. Although some culture media contain a collagenase inhibitor, its presence is not constant and its molecular weight (at least 120000) is not compatible with the decrease in molecular weight accompanying activation; also combinations of collagenase with inhibitor are not reactivated by trypsin. Moreover, the latency remains after gel filtration, or treatment by high dilution, exposure to pH values between 2.5 and 10, or high ionic strength, urea or detergent. 6. It is proposed that latent collagenase represents an inactive precursor of the enzyme, a ;procollagenase', and that the extracellular activity of collagenase is controlled by another protease that activates procollagenase by a limited proteolysis of its molecule.  相似文献   

11.
A rat osteosarcoma cell clone (ROS 17/2), and osteoblast-enriched populations from rat calvaria cultured in the presence of concanavalin A, have been shown to produce latent collagenase and collagenase inhibitors. The enzymes and inhibitor activities from the ROS 17/2 cells were concentrated by ammonium sulphate precipitation and separated by gel filtration on AcA 54 resin. The size of the latent collagenase (Mr approximately equal to 58000) was reduced on conversion to active enzyme (Mr approximately equal to 48000) by p-aminophenylmercuric acetate. Latent and active forms of gelatinase activity, similar in size to the corresponding forms of collagenase, were also resolved. The collagenase inhibitor activity, which was sensitive to organomercurials, was recovered in two peaks (Mr approximately equal to 68000 and 30000). The active collagenase cleaved interstitial collagens (type I = III greater than II) producing typical 3/4 and 1/4 fragments. This activity was inhibited by the metal ion chelators ethylenediaminetetraacetic acid and o-phenanthroline. Additional specific cleavages of native collagen were also observed which, from the susceptibility of this activity to phenylmethylsulphonyl fluoride, leupeptin and antipain, suggested the presence of a second collagenolytic enzyme. This synthesis of collagenolytic enzymes by these osteoblast-like cells suggests that individual osteoblasts, like fibroblasts, are capable of both synthesizing and degrading their respective organic matrices in vivo.  相似文献   

12.
The proform of chick gelatinase (type IV collagenase) was isolated and purified to a high specific activity of 12,071 U/mg from cultured embryonic skin fibroblasts stimulated with cytochalasin-B. The enzyme was activated in the presence of 4-aminophenylmercuric acetate with a fall in molecular weight from 66,000-58,000 on non-reducing polyacrylamide gel electrophoresis and was active over the pH range of 6.0-8.9 against a number of substrates. Further biochemical characterisation showed that the organomercurial activated form of the enzyme behaved like a typical mammalian gelatinase, actively degrading gelatin, soluble type I collagen, collagenase generated type I fragments, type IV collagen (producing 3/4 and 1/4 fragments) and type V collagen, whilst having little effect on laminin. The enzyme was inhibited by metal chelators such as EDTA and 1,10-phenanthroline, but not by inhibitors is suggested that this may be TIMP-2. An antiserum was raised to the proenzyme and was found to localise intra- and extra-cellularly in both tissue sections and cell cultures.  相似文献   

13.
Cells were isolated from the aortae of 17-day old chick embryos by digestion of the vessels with a combination of trypsin and collagenase. When these cells were incubated in suspension culture in Krebs-Ringer media containing pancreatic trypsin inhibitor and radioactive amino acids, they synthesized and secreted labeled proteins into the media. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the secreted proteins labeled with [14C]proline revealed two major components. The larger component with an approximate molecular weight of 125,000 had a [14C]hydroxyproline content consistent with a form of procollagen. The molecular weight of 70,000 and [14C]hydroxyproline content of the second component was consistent with that previously reported for tropoelastin extracted from chick aortae. By following the kinetics and secretion of tropoelastin labeled with [3H]valine, we have estimated that 17 minutes are required to synthesize and secrete the molecule under these experimental conditions.  相似文献   

14.
The collagenase from the larvae Hypoderma lineatum, with a molecular weight of 24 000 and isoelectric point of 4.1, was obtained in homogeneous form by ion-exchange chromatography. It is stoichiometrically inhibited by diisopropylfluorophosphate. On the other hand it is unaffected by ethylenediaminetetraacetate, p-chloromercuribenzoate, dithiothreitol, N-tosyllysine chloromethyl ketone, N-tosylphenylalanine chloromethyl ketone and ovomucoid trypsin inhibitor. The enzyme which degrades native collagen in its helical parts, has a specific activity on thermally reconstituted collagen fibrils of 150 micrograms collagen degraded x min-1 x (mg enzyme)-1 at 37 degrees C. It hydrolyses casein but has no esterolytic activity characteristic of trypsin, chymotrypsin nor elastase. It has no action on the synthetic peptide 4-phenylazobenzyloxycarbonyl-L-prolyl-L-leucyl-L-glycyl-L-prolyl-D-arginine. The amino acid composition of Hypoderma collagenase indicates a distinct similarity with the serine proteinases of the trypsin family and with another athropode serine collagenase, that of the fiddler crab Uca pugilator. This suggests that eucaryotic collagenases with digestive rather than morphogenic function represent a new category of members of the trypsin family.  相似文献   

15.
The validity of the enzymatic assay of procollagenase within crude biological media containing also the collagenase inhibitor TIMP (tissue inhibitor of metalloproteinases) as well as other (pro)metalloproteinases and sometimes, metalloproteinase-TIMP complexes, has been reevaluated. To be enzymatically assayed, procollagenase has to be activated. The standard activation procedures by either trypsin or 4-aminophenylmercuric acetate (APMA) both allow an optimal recovery of collagenase from procollagenase when the media do not contain free TIMP. However, they do not destroy TIMP nor do they reactivate the collagenase present in enzyme-inhibitor complexes. Therefore, the collagenase formed by the activation of procollagenase in the presence of free TIMP is immediately inactivated by binding to the inhibitor. As a result, both the bound collagenase and TIMP can no longer be assayed by enzymatic methods. An optimal recovery of collagenase can, however, be obtained if free TIMP is neutralized by the binding of other tissue metalloproteinases (such as those present in culture media of rabbit bone marrow-derived macrophages) prior to the activation and assay of procollagenase. Similarly, it is possible to recover under an active free form a large part of the TIMP present in collagenase- (or other metalloproteinase-)TIMP complexes by heating the complexes at acid pH under conditions which inactivate the collagenase.  相似文献   

16.
A potent inhibitor of human collagenases, released from human tendon explants in culture, has been purified and partially characterized. The tendon inhibitor has an estimated molecular weight of 25,000. It is relatively heat-stable but undergoes loss of activity following exposure to trypsin. It inhibits trypsin-activated rheumatoid synovial collagenase as well as the enzyme obtained from polymorphonuclear leukocytes. No inhibition of collagenase from Clostridium histolyticum (clostridiopeptidase A, EC 3.4.24.3) was noted. This collagenase inhibitor may be a factor in the regulation of extracellular connective tissue catabolism.  相似文献   

17.
1. Active type collagenase was purified as much as 140-fold from the explant medium of bovine dental sacs and showed a single band on disc gel electrophoresis. Purified collagenase cleaved native collagen at only one locus under physiological conditions, but hydrolyzed neither gelatin nor alpha-casein. The optimal pH was about 7.8. 2. The molecular weight of active type enzyme was 35,000 by gel filtration and 34,000 by gel electrophoresis. The activation of latent type of collagenase resulted in the reduction of molecular weight from 45,000 to 38,000 by gel filtration. 3. A small but detectable amount of collagenase was directly extracted from frozen and thawed bovine dental sacs. In explant media of frozen and thawed tissue and fresh tissue with actinomycin D, some activity was detected for the first 2 days, but essentially no collagenase activity was detected in the explant medium after day 3. 4. The latent type collagenase was activated by trypsin, 4-aminophenylmercuric acetate (4-APMA), thiocyanate and deoxycholate (DOC). DOC showed irreversible dissociation of latent type enzyme in similar fashion to that exerted by 4-APMA. 5. The purified collagenase was inhibited by bovine serum, EDTA, o-phenanthroline, cysteine and dithiothreitol.  相似文献   

18.
As tissue cultures, rabbit bone, skin and non-gravid uterus synthesise inhibitors of collagenase (EC 3.4.24.3). An assay for the inhibitors is described and their action on collagenase from different tissue sources demonstrated. Evidence for the involvement of the tissue inhibitors of collagenase in the latency of the enzyme in culture media is presented. Latent collagenase was activated by treatment with 4-aminophenylmercuric acetate, and then reacted with the inhibitors to form inactive complexes with properties similar to the naturally occurring latent enzyme forms. The associated changes in molecular weight are detailed, and discussed in relation to the observations of other workers concerning the extracellular control of collagenase activity.  相似文献   

19.
Purification of rabbit bone inhibitor of collagenase.   总被引:20,自引:7,他引:20       下载免费PDF全文
1. Rabbit bones in tissue culture synthesize an inhibitor of collagenase during the first 4 days of culture. 2. The inhibitor was purified by a combination of gel filtration, concanavalin A--Sepharose chromatography, ion-exchange chromatography and zinc-chelate affinity chromatography. 3. The purified inhibitor migrated as a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had a mol.wt. of 28000. 4. The inhibitor blocked the activity of the metalloproteinases collagenase, gelatinase, neutral proteinase III (proteoglycanase), human leucocyte collagenase and gelatinase, but not thermolysin or bacterial collagenase. The serine proteinases plasmin and trypsin were not inhibited. 5. The inhibitor interacted with purified rabbit bone collagenase with 1:1 stoichiometry. 6. The inhibitory activity was lost after incubation for 1 h at 90 degrees C, after treatment with trypsin (250 micrograms/ml) at 37 degrees C for 30 min and after reduction and alkylation.  相似文献   

20.
1. Pure rabbit bone metalloproteinase inhibitor (TIMP) bound tightly to pure rabbit bone collagenase with an apparent Kd of 1.4 X 10(-10) M. 2. The molecular weight of the enzyme-inhibitor complex was found to be 54 000, but no enzyme activity could be recovered from the complex after treatment with either mercurials or proteinases. The complex thus differed from latent collagenase in terms of size, susceptibility to mercurials and behaviour on concanavalin A-Sepharose. 3. The interaction of the purified components was compared with that of crude collagenase and crude inhibitor in culture medium. Mercurial treatment partially reversed the inhibition in the crude system, but not when the purified components were used. 4. The significance of the results is discussed in relation to the extracellular control of the activity of collagenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号