首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Guinea pig mesenteric lymphatic vessels exhibit vasomotion through a pacemaker mechanism that involves intracellular Ca(2+) release and resultant spontaneous transient depolarizations (STDs) of the smooth muscle membrane potential. This study presents a detailed characterization of the effects of cyclopiazonic acid (CPA) on this pacemaker activity. Microelectrode recordings from smooth muscle in vessel segments revealed that application of CPA (1-10 microM) caused a hyperpolarization accompanied by a decrease in the frequency and amplitude of STDs. The CPA-induced hyperpolarization was abolished after destruction of the endothelium and in the presence of N(G)-nitro-L-arginine (100 microM) or 1H-[1,2,4]oxadiazolol-[4,3-a]quinoxaline-1-one (10 microM), which suggests a contribution of endothelium-derived nitric oxide (EDNO) in this response. In the absence of EDNO-induced effects, CPA decreased the frequency and amplitude of STDs recorded before and in the presence of the thromboxane A(2) mimetic U-46619, norepinephrine, or thimerosal. CPA abolished U-46619-induced vasomotion as determined by measurement of constriction-associated intracellular Ca2+ concentration using the ratiometric Ca2+ indicator fura-2. The endothelial actions of CPA were compared with those of ACh, which is known to cause EDNO release in this preparation. Although CPA and ACh both increased endothelial intracellular Ca2+ concentration and depolarized the membrane potential, the kinetics of action for both parameters were markedly slower for CPA than ACh. These results suggest that CPA first hyperpolarizes the lymphatic smooth muscle and decreases STD frequency and amplitude through endothelial release of EDNO, and second, consistent with the action of CPA to inhibit sarcoplasmic reticulum Ca2+-ATPase and deplete Ca2+ stores, it further reduces STD activity. Inhibition of the lymphatic smooth muscle pacemaker mechanism is thought to abolish agonist-induced vasomotion.  相似文献   

4.
Activation of adenosine A(1) receptors by endogenous adenosine plays a neuroprotective role under various pathophysiological conditions including hypoxia. Intracellular recordings were made in rat pyramidal cells of the somatosensory cortex. Hypoxia (5 min) induced a membrane depolarization and a decrease of input resistance. The A(1) receptor agonist N(6)-cyclopentyladenosine (CPA, 100 microM) reversibly inhibited the hypoxic depolarization. The inhibition was also present after blockade of the A(2A), A(2B) and A(3) receptor subtypes by selective antagonists. CPA had no effect on the hypoxic decrease of input resistance. 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX), a selective A(1) receptor antagonist, which did not alter hypoxic depolarization when given alone abolished the inhibitory effect of CPA. Neither CPA nor DPCPX influenced membrane potential or apparent input resistance under normoxic conditions. The novel pyrimidoindole (R)-9-(1-methylbenzyl)-2-(4'-pyridyl)-9H-pyrimido[4,5-b]indole-4-amine (APPPI, 1 and 10 microM) reversibly diminished hypoxic depolarization but had no significant effect on input resistance. The effect of APPPI at a concentration of 1 microM, but not at 10 microM, was blocked by DPCPX (0.1 microM). CPA (100 microM) inhibited [(3)H]-noradrenaline ([(3)H]-NA) release from rat hippocampal brain slices significantly only in the presence of rauwolscine (0.1 microM), an alpha(2)-adrenoceptor antagonist. APPPI (1 and 10 microM) exhibited an inhibitory effect similar to that observed with CPA. The effects of both CPA and APPPI were antagonized by DPCPX (0.1 microM). The present data suggest that mainly presynaptic mechanisms prevent neurons from hypoxic changes by an inhibition of transmitter release. However, in contrast to CPA, APPPI exhibited additional effects, which require further investigation.  相似文献   

5.
BackgroundThe aim of this study was to compare the diagnostic performances of the collagen proportionate area (CPA) and liver stiffness measurement (LSM) for liver fibrosis quantification in chronic hepatitis C (CHC).MethodsA total of 137 eligible consecutive Taiwanese patients (74 women and 63 men; age 21–80 years; median age 54 years), with CHC underwent LSM by using acoustic radiation force impulse (ARFI) elastography and an immediate percutaneous liver biopsy for METAVIR scoring. Liver tissue sections were stained using picrosirius red. Areas of the stained collagen and the tissue parenchyma were calculated in pixels. The ratio between the two areas was expressed as a CPA percentage. The result of LSM was presented as shear wave velocity (SWV).ResultsMETAVIR fibrosis (F) stages were dichotomized using the CPA (%) and SWV (m/s), and the optimal cut-off values were 7.47 and 1.59 for F1 versus F2–4; 12.56 and 1.73 for F1, 2 versus F3, 4; 15.32 and 1.96 for F1–3 versus F4. To dichotomize F1 versus F2–4, the areas under receiver operating characteristic curves for the CPA was 0.9349 (95% confidence interval: 0.8943–0.9755) and for SWV was 0.8434 (0.7762–0.9105) (CPA versus SWV, P = 0.0063). For F1, 2 versus F3, 4, the CPA was 0.9436 (0.9091–0.9781); SWV was 0.8997 (0.8444–0.9551) (P = 0.1587). For F1–3 versus F4, the CPA was 0.8647 (0.7944–0.9349); SWV was 0.9036 (0.8499–0.9573) (P = 0.2585). The CPA could be predicted in a linear regression formula by using SWV and platelet count (R2 = 0.524).ConclusionsThe CPA and ARFI elastography are promising tools for liver fibrosis evaluation. The CPA was superior to ARFI elastography in the diagnosis of significant fibrosis (≥ F2). The CPA may be independent of severe necroinflammation, which may augment liver stiffness.  相似文献   

6.
7.
Treatment with the anticancer drug cyclophosphamide (CPA) destroys ovarian follicles. The active metabolites of CPA are detoxified by conjugation with glutathione (GSH). We tested the hypotheses that CPA causes apoptosis in ovarian follicles and that suppression of ovarian GSH synthesis before CPA administration enhances CPA-induced apoptosis. Proestrous rats were given two injections, 2 h apart, with (1) saline, then saline; (2) saline, then 50 mg/kg CPA; (3) saline, then 300 mg/kg CPA; or (4) 5 mmol/kg buthionine sulfoximine (BSO) to inhibit glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, and then 50 mg/kg CPA. Statistically significantly increased DNA fragmentation by agarose gel electrophoresis and granulosa cell apoptosis by TUNEL were observed in the CPA-treated ovaries 24 h after the second injection, but BSO did not enhance the effect of 50 mg/kg CPA. We next tested the hypothesis that CPA depresses ovarian GSH concentration and expression of the rate-limiting enzyme in GSH synthesis, GCL. Proestrous rats were injected with 300 or 50 mg/kg CPA or vehicle and were sacrificed 8 or 24 h later. After CPA treatment, ovarian and hepatic GSH levels decreased significantly, and ovarian GCL subunit mRNA levels increased significantly. There were no significant changes in GCL subunit protein levels. Finally, we tested the hypothesis that GSH depletion causes apoptosis in ovarian follicles. Proestrous or estrous rats were injected with 5 mmol/kg BSO or saline at 0700 and 1900 h. There was a significant increase in the percentage of histologically atretic follicles and a nonsignificant increase in the percentage of apoptotic, TUNEL-positive follicles 24 h after onset of BSO treatment. Our results demonstrate that CPA destroys ovarian follicles by inducing granulosa cell apoptosis and that CPA treatment causes a decline in ovarian GSH levels. More pronounced GSH suppression achieved after BSO treatment did not cause a statistically significant increase in follicular apoptosis. Thus, GSH depletion does not seem to be the mechanism by which CPA causes follicular apoptosis.  相似文献   

8.
Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (~50%), but at a much lower frequency during vegetative growth (~0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ~90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling.  相似文献   

9.
A new member of the carboxypeptidase gene family, carboxypeptidase A2 (CPA2), has been identified from the predicted amino acid sequence of a rat pancreatic cDNA clone. In vivo recombination and in situ hybridization techniques employing the CPA2 cDNA resulted in the isolation of two genomic clones spanning the 25-kilobase pair rat CPA2 gene. Evolutionary trees built from the amino acid sequences of the known pancreatic carboxypeptidases show that CPA2 and carboxypeptidase A1 (CPA1) are the products of genes which duplicated before the mammalian radiation, and that bovine CPA is of the A1 type. The substrate specificities of CPA1 and CPA2 isolated from rat pancreas are similar to bovine CPA in that carboxyl-terminal amino acids with aromatic or branched aliphatic side chains are preferred. However, the substrate preference of rat CPA1 is skewed toward smaller amino acids, while that of rat CPA2 is skewed toward bulkier amino acids as compared to bovine CPA. The differences in the substrate specificities of these three carboxypeptidases are compatible with the nature of the amino acid replacements in their binding pockets for the carboxylterminal amino acid of the substrate.  相似文献   

10.
The effects of low power electromagnetic millimeter waves (MWs) on T cell activation, proliferation, and effector functions were studied in BALB/c mice. These functions are important in T-lymphocyte mediated immune responses. The MW exposure characteristics were: frequency = 42.2 GHz; peak incident power density = 31 +/- 5 mW/cm(2), peak specific absorption rate (SAR) at the skin surface = 622 +/- 100 W/kg; duration 30 min daily for 3 days. MW treatment was applied to the nasal area. The mice were additionally treated with cyclophosphamide (CPA), 100 mg/kg, a commonly used immunosuppressant and anticancer drug. Four groups of animals were used in each experiment: naive control (Naive), CPA treated (CPA), CPA treated and sham exposed (CPA + Sham), and CPA treated and MW exposed (CPA + MW). MW irradiation of CPA treated mice significantly augmented the proliferation recovery process of T cells (splenocytes). A statistically significant difference (P <.05) between CPA and CPA + MW groups was observed when cells were stimulated with an antigen. On the other hand, no statistically significant difference between CPA and CPA-Sham groups was observed. Based on flow cytometry of CD4(+) and CD8(+) T cells, two major classes of T cells, we show that CD4(+) T cells play an important role in the proliferation recovery process. MW exposure restored the CD25 surface activation marker expression in CD4(+) T cells. We next examined the effector function of purified CD4(+) T cells by measuring their cytokine profile. No changes were observed after MW irradiation in interleukin-10 (IL-10) level, a Th2 type cytokine, while the level of interferon-gamma (IFN-gamma), a Th1 type cytokine was increased twofold. Our results indicate that MWs enhance the effector function of CD4(+) T cells preferentially, through initiating a Th1 type of immune response. This was further supported by our observation of a significant enhancement of tumor necrosis factor-alpha (TNF-alpha) production by peritoneal macrophage's in CPA treated mice. The present study shows MWs ameliorate the immunosuppressive effects of CPA by augmenting the proliferation of splenocytes, and altering the activation and effector functions of CD4(+) T cells.  相似文献   

11.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/mg protein, indicating stoichiometric reaction of CPA with the Ca2+-ATPase. Cyclopiazonic acid caused similar inhibition of the Ca2+-stimulated ATP hydrolysis in intact sarcoplasmic reticulum and in a purified preparation of Ca2+-ATPase. Cyclopiazonic acid also inhibited the Ca2+-dependent acetylphosphate, p-nitrophenylphosphate and carbamylphosphate hydrolysis by sarcoplasmic reticulum. ATP protected the enzyme in a competitive manner against inhibition by CPA, while a 10(5)-fold change in free Ca2+ concentration had only moderate effect on the extent of inhibition. CPA did not influence the crystallization of Ca2+-ATPase by vanadate or the reaction of fluorescein-5'-isothiocyanate with the Ca2+-ATPase, but it completely blocked at concentrations as low as 1-2 mol of CPA/mol of ATPase the fluorescence changes induced by Ca2+ and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) in FITC-labeled sarcoplasmic reticulum and inhibited the cleavage of Ca2+-ATPase by trypsin at the T2 cleavage site in the presence of EGTA. These observations suggest that CPA interferes with the ATP-induced conformational changes related to Ca2+ transport. The effect of CPA on the sarcoplasmic reticulum Ca2+-ATPase appears to be fairly specific, since the kidney and brain Na+,K+-ATPase (EC 3.6.1.37), the gastric H+,K+-ATPase (EC 3.6.1.36), the mitochondrial F1-ATPase (EC 3.6.1.34), the Ca2+-ATPase of erythrocytes, and the Mg2+-activated ATPase of T-tubules and surface membranes of rat skeletal muscle were not inhibited by CPA, even at concentrations as high as 1000 nmol/mg protein.  相似文献   

12.
3-Phenyl-2-sulfamoyloxypropionic acid (2), 2-benzyl-3-sulfamoylpropionic acid (3), and N-(N-hydroxysulfamoyl)phenylalanine (5) have been synthesized and evaluated as inhibitors for carboxypeptidase A (CPA) to find that they inhibit the enzyme competitively with the Ki values in the microM range, suggesting that their binding modes to CPA are analogous to each other, and resemble the binding mode of N-sulfamoylphenylalanine (1) that has been established by the X-ray crystallographic method to form a complex with CPA in a manner reminiscent of the binding of a transition state in the catalytic pathway. It was concluded thus that they are a new type of transition state analogue inhibitors for CPA. (R)-N-Hydroxy-N-sulfamoyl-beta-phenylalanine (8) was shown to be also a potent CPA inhibitor (Ki = 39 microM), the high potency of which may be ascribed to the involvement of the hydroxyl in the binding of CPA, most likely forming bidentate coordinative bonds to the zinc ion in CPA together with the sulfamoyl oxygen atom.  相似文献   

13.
Specific [3H]MK801 binding to rat brain NMDA receptors after the administration of the convulsant drug 3-mercaptopropionic acid (MP) and the adenosine analogue cyclopentyladenosine (CPA) was studied by means of a quantitative autoradiographic method. MP administration (150 mg/kg, i.p.) caused significant decreases in [3H]MK801 binding in several hippocampus subareas and layers, mainly in CA1 and CA3 at seizure (11–27%) and postseizure (8–16%) and in cerebral occipital cortex at seizure (18–22%). In nucleus accumbens, a rise was observed at postseizure (44%) and a tendency to increase at seizure (24%). CPA (2mg/kg, i.p.) decreased ligand binding in hippocampus (CA1, CA2, CA3) (17–22%) and in occipital cerebral cortex (18–24%). When CPA was administered 30 minutes before MP (which delayed seizure onset) and rats were sacrified at seizure, decreases in [3H]MK801 binding in several layers of CA1 and CA3 of hippocampus (11–27%) and in CA1, CA2, CA3 (24–35%) after CPA+MP postseizure, and an increase in CA2 after CPA and CPA+MP postseizure (20–34%), were observed. A drop was found in the occipital subarea (18–24%) after CPA and in the frontal and occipital subarea after CPA+MP postseizure (24–34%) while no changes were observed in any treatment involving the other cerebral cortex regions, thalamic nuclei, caudate putamen and olfactory tubercle. These results show that [3H]MK801 binding changes according to drug treatment and the area being studied, thus indicating a different role in seizure activity.  相似文献   

14.
The structure of rat carboxypeptidase A2 (CPA2), which has a unique specificity for tryptophan-containing COOH-terminal peptides, has been determined in an unliganded state at 1.9-A resolution and refined to a crystallographic R-factor of 18.3%. Comparison of the structure of CPA2 with that of bovine carboxypeptidase A (referred to here as CPA1) reveals that the specificity of the former for larger amino acids probably arises from two amino acid replacements within the binding cavity (Thr268----Ala and Leu203----Met), coupled with differences in the positions of conserved residues in a surface loop on one face of the specificity pocket. The position of the reactive-site surface loop may be affected also by a disulfide bridge between Cys210 and Cys244. In this unliganded form of the enzyme, Tyr248 takes up a position interior to the specificity pocket and is distinct from that observed in bovine CPA1. The structural differences between CPA1 and CPA2 correlate strongly with crystallographically determined temperature factors and thus appear to be largest where the enzyme is flexible.  相似文献   

15.
The effects of adenosinergic and angiotensin IIergic agents and of their combinations on the seizure threshold in mice were determined by measuring the dose of timed-intravenous (tail vein) infused pentylenetetrazol (PTZ) required to elicit clonic seizures. All drugs were administered intracerebroventricularly (i.c.v.). Angiotensin II (ANG II), its peptide analogue sarmesin, the selective adenosine A1 receptor agonists N6-cyclopentyladenosine (CPA) and 2-chloroadenosine (2-ClAdo) significantly increased the PTZ seizure threshold. The selective AT1 receptor antagonist losartan blocked the anticonvulsant effect of ANG II, sarmesin and CPA. The selective AT2 receptor antagonist PD 123319 failed to block the effect of ANG II and sarmesin on the PTZ seizure threshold but reversed the threshold-increasing effect of CPA. The selective adenosine A1 receptor antagonist 8-(p-sulfophenyl)-theophylline (8-p-SPT) alleviated the threshold-increasing effect of CPA and ANG II. Concurrent injection of 2-ClAdo and ANG II as well as of 2-ClAdo and sarmesin, at doses which had no significant effect on the PTZ seizure threshold when given alone, acted synergistically, producing greater effect on the threshold. Taken together, the findings support the possibility of specific ANG II-adenosine A1 receptor interactions in the regulation of the PTZ seizure threshold.  相似文献   

16.
In order to develop a method for detecting metabolism-mediated embryotoxicity, differentiating embryonic stem (ES) cells were exposed to the well-known proteratogen, cyclophosphamide (CPA). CPA was tested in a scientifically validated embryonic stem-cell test (EST), and in the newly developed reporter-gene assay for developmental cardiotoxicity. Both assays gave false-negative results. Because no metabolic competence (cytochrome P450 [CYP] activity) was found in the ES cells under the selected culture conditions, a simple biotransformation system was combined with the reporter-gene assay. As the metabolic pathway of CPA is well characterised, the genetically engineered mammalian cell line V79, transfected with CYP2B1 cDNA, was selected as a biotransformation system. CYP2B1 is responsible for transforming CPA into teratogenically active metabolites. The supernatants of genetically engineered V79 cells were analysed in the reporter-gene assay for developmental cardiotoxicity. In preliminary experiments, the combined system was able to detect the embryotoxic potential of the proteratogen, CPA.  相似文献   

17.
The effect of millimeter electromagnetic waves (MWs) on cyclophosphamide (CPA) induced toxicity to leukocytes, bone marrow cells, and T-cell-mediated immunity was examined. For studying the effect of MWs on CPA induced leukopenia and myelosuppression, BALB/C mice were irradiated for 3 days, 30 min each day, prior to administration of CPA (200 mg/kg). MWs were produced with a Russian made YAV-1 generator. The device produced 42.2 +/- 0.2 GHz modulated wave radiation through a 10 mm x 20 mm rectangular output horn. The animals were irradiated on the nose area. Peak SAR and incident power density were measured as 622 +/- 100 W/kg and 31 +/- 5 mW/cm(2), respectively. For studying the effect of MWs on CPA induced suppression of T-cell mediated immunity, a delayed type hypersensitivity (DTH) assay in mouse skin was used. The DTH reaction in mouse skin was induced by topical application of dinitrochlorobenzene (DNCB) and quantified by measuring the increase in ear thickness and by histological examination. Treatment of animals with CPA significantly (P < 0.05) reduced leukocyte and bone marrow cell population, but MW irradiation did not show any significant protection from the immunosuppressive effects of CPA. Furthermore, MW irradiation did not protect the animals from CPA induced suppression of T-cell mediated immunity.  相似文献   

18.
BackgroundThe combination of Panax ginseng and Angelica sinensis (CPA) has been used to treat stroke for one thousand years and demonstrated clinically to have satisfied effects. However, the underlying mechanism remains unknown.PurposeWe investigate whether CPA has neuroprotective effects via suppressing Nod-like receptor protein 3 (NLRP3) inflammasome and microglial pyroptosis against ischemic injury in transient middle cerebral artery occlusion (MCAO) rats.MethodsMale rats were divided randomly into sham operated, MCAO, MCC950 (NLRP3-specific inhibitor) and CPA groups. Neurological deficits, glucose uptake, infarct size, activation of NLRP3 inflammasomes, microglial pyroptosis and related signaling pathways were detected. BV-2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) were used in in vitro experiments.ResultsCompared with sham rats, elevated level of proinflammatory interleukin-1β (IL-1β) in plasma, neurological function deficit, reduced glucose uptake in ipsilateral hemisphere, obvious infarct size, the activation of NLRP3 inflammasomes and enhanced microglial pyroptosis were presented in MCAO rats. The administrations of MCC950 and CPA respectively reversed the results. In vitro OGD/R induced the release of lactate dehydrogenase, promoted NLRP3 inflammasomes activation and pyroptosis in BV-2 cells, which was significantly suppressed by treatment with ginsenoside Rd (Rd) and Z-ligustilide (LIG). Mechanistically, OGD/R induced high expression of dynamin-related protein 1 (Drp1) and mitochondrial fission, as well as NLRP3 inflammasomes activation and pyroptosis in BV-2 cells, which was attenuated by treatment with Rd and LIG. Moreover, the increased expression of Drp1 was validated in MCAO rats, and also abolished by MCC950 or CPA treatments.ConclusionCPA treatment attenuates cerebral injury via inhibition of NLRP3 inflammasomes activation and microglial pyroptosis after stroke, which at least partially involved in the amelioration of Drp1-mediated mitochondrial fission.  相似文献   

19.
Human digestive carboxypeptidases CPA1, CPA2, and CPB1 are secreted by the pancreas as inactive proenzymes containing a 94-96-amino acid-long propeptide. Activation of procarboxypeptidases is initiated by proteolytic cleavage at the C-terminal end of the propeptide by trypsin. Here, we demonstrate that subsequent cleavage of the propeptide by chymotrypsin C (CTRC) induces a nearly 10-fold increase in the activity of trypsin-activated CPA1 and CPA2, whereas CPB1 activity is unaffected. Other human pancreatic proteases such as chymotrypsin B1, chymotrypsin B2, chymotrypsin-like enzyme-1, elastase 2A, elastase 3A, or elastase 3B are inactive or markedly less effective at promoting procarboxypeptidase activation. On the basis of these observations, we propose that CTRC is a physiological co-activator of proCPA1 and proCPA2. Furthermore, the results confirm and extend the notion that CTRC is a key regulator of digestive zymogen activation.  相似文献   

20.
Adenine nucleotides displace the binding of the selective adenosine A-1 receptor ligand [3H]cyclopentyladenosine (CPA) to rat brain membranes in a concentration-dependent manner, with the rank order of activity being ATP greater than ADP greater than AMP. Binding was also displaced by GTP, ITP, adenylylimidodiphosphate (AppNHp), 2-methylthioATP, and the beta-gamma-methylene isostere of ATP, but was unaffected by the alpha-beta-methylene isosteres of ADP and ATP, and UTP. At ATP concentrations greater than 100 microM, the inhibitory effects on CPA binding were reversed, until at 2 mM ATP, specific binding of CPA was identical to that seen in controls. Concentrations of ATP greater than 10 mM totally inhibited specific binding. Inclusion of the catabolic enzyme adenosine deaminase in the incubation medium abolished the inhibitory effects of ATP, indicating that these were due to adenosine formation, presumably due to ectonucleotidase activity. The inhibitory effects were also attenuated by the alpha-beta-methylene isostere of ATP, an ectonucleotidase inhibitor. Adenosine deaminase, alpha-beta-methylene ATP (100 microM), and beta-gamma-methylene ATP (100 microM) had no effect on the "stimulatory" phase of binding, although GTP (100 microM) slightly attenuated it. Comparison of the binding of [3H]CPA in the absence and presence of 2 mM ATP by saturation analysis showed that the KD and apparent Bmax values were identical. Examination of the pharmacology of the control and "ATP-dependent" CPA binding sites showed slight changes in binding of adenosine agonists and antagonists. The responses observed with high concentrations of ATP were not observed with GTP, AppNHp, the chelating agents EDTA and EGTA, or inorganic phosphate. The divalent cations Mg2+ and Ca2+ at 10 mM attenuated the stimulatory actions of high (2 mM) concentrations of ATP, whereas EGTA and EDTA (10 mM) enhanced the "stimulatory" actions of ATP. EDTA (10 mM) abolished the inhibitory effects of ATP, indicating a specific dependence on Mg2+ for the inhibitory response. The effects of ATP on [3H]CPA binding were reversible for antagonists but not agonists. The mechanism by which ATP reverses its own inhibitory action on adenosine A-1 radioligand binding is unclear, and from the observed actions of the divalent cations and chelating agents probably does not involve a phosphorylation-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号