首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives.  相似文献   

2.

Background  

Although the prediction of protein-protein interactions has been extensively investigated for yeast, few such datasets exist for the far larger proteome in human. Furthermore, it has recently been estimated that the overall average false positive rate of available computational and high-throughput experimental interaction datasets is as high as 90%.  相似文献   

3.

Background  

Many crucial cellular operations such as metabolism, signalling, and regulations are based on protein-protein interactions. However, the lack of robust protein-protein interaction information is a challenge. One reason for the lack of solid protein-protein interaction information is poor agreement between experimental findings and computational sets that, in turn, comes from huge false positive predictions in computational approaches. Reduction of false positive predictions and enhancing true positive fraction of computationally predicted protein-protein interaction datasets based on highly confident experimental results has not been adequately investigated.  相似文献   

4.

Background  

The functional characterization of newly discovered proteins has been a challenge in the post-genomic era. Protein-protein interactions provide insights into the functional analysis because the function of unknown proteins can be postulated on the basis of their interaction evidence with known proteins. The protein-protein interaction data sets have been enriched by high-throughput experimental methods. However, the functional analysis using the interaction data has a limitation in accuracy because of the presence of the false positive data experimentally generated and the interactions that are a lack of functional linkage.  相似文献   

5.

Background  

A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species.  相似文献   

6.

Background  

In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes.  相似文献   

7.

Background  

Recent technological advances have enabled high-throughput measurements of protein-protein interactions in the cell, producing large protein interaction networks for various species at an ever-growing pace. However, common technologies like yeast two-hybrid may experience high rates of false positive detection. To combat false positive discoveries, a number of different methods have been recently developed that associate confidence scores with protein interactions. Here, we perform a rigorous comparative analysis and performance assessment among these different methods.  相似文献   

8.

Background  

Determining the functions of uncharacterized proteins is one of the most pressing problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA expression analyses and systematic protein localization studies provide experimental information that can be used for this purpose. The data from such experiments contain many false positives and false negatives, but can be processed using computational methods to provide reliable information about protein-protein relationships and protein function. An outstanding and important goal is to predict detailed functional annotation for all uncharacterized proteins that is reliable enough to effectively guide experiments.  相似文献   

9.

Background  

PDZ domains mediate protein-protein interactions involved in important biological processes through the recognition of short linear motifs in their target proteins. Two recent independent studies have used protein microarray or phage display technology to detect PDZ domain interactions with peptide ligands on a large scale. Several computational predictors of PDZ domain interactions have been developed, however they are trained using only protein microarray data and focus on limited subsets of PDZ domains. An accurate predictor of genomic PDZ domain interactions would allow the proteomes of organisms to be scanned for potential binders. Such an application would require an accurate and precise predictor to avoid generating too many false positive hits given the large amount of possible interactors in a given proteome. Once validated these predictions will help to increase the coverage of current PDZ domain interaction networks and further our understanding of the roles that PDZ domains play in a variety of biological processes.  相似文献   

10.

Background  

Yeast two-hybrid (Y2H) screens have been among the most powerful methods to detect and analyze protein-protein interactions. However, they suffer from a significant degree of false negatives, i.e. true interactions that are not detected, and to a certain degree from false positives, i.e. interactions that appear to take place only in the context of the Y2H assay. While the fraction of false positives remains difficult to estimate, the fraction of false negatives in typical Y2H screens is on the order of 70-90%. Here we present novel Y2H vectors that significantly decrease the number of false negatives and help to mitigate the false positive problem.  相似文献   

11.

Background  

A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles.  相似文献   

12.
Predicting active site residue annotations in the Pfam database   总被引:1,自引:0,他引:1  

Background

The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.

Results

This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.

Conclusion

Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.  相似文献   

13.

Background  

Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues.  相似文献   

14.

Background  

It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species.  相似文献   

15.

Background  

The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms.  相似文献   

16.

Background  

Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses.  相似文献   

17.

Background  

The recently emerged protein interaction network paradigm can provide novel and important insights into the innerworkings of a cell. Yet, the heavy burden of both false positive and false negative protein-protein interaction data casts doubt on the broader usefulness of these interaction sets. Approaches focusing on one-protein-at-a-time have been powerfully employed to demonstrate the high degree of conservation of proteins participating in numerous interactions; here, we expand his 'node' focused paradigm to investigate the relative persistence of 'link' based evolutionary signals in a protein interaction network of S. cerevisiae and point out the value of this relatively untapped source of information.  相似文献   

18.

Background  

The idea that the assembly of protein complexes is linked with protein disorder has been inferred from a few large complexes, such as the viral capsid or bacterial flagellar system, only. The relationship, which suggests that larger complexes have more disorder, has never been systematically tested. The recent high-throughput analyses of protein-protein interactions and protein complexes in the cell generated data that enable to address this issue by bioinformatic means.  相似文献   

19.

Background  

Identifying all protein-protein interactions in an organism is a major objective of proteomics. A related goal is to know which protein pairs are present in the same protein complex. High-throughput methods such as yeast two-hybrid (Y2H) and affinity purification coupled with mass spectrometry (APMS) have been used to detect interacting proteins on a genomic scale. However, both Y2H and APMS methods have substantial false-positive rates. Aside from high-throughput interaction screens, other gene- or protein-pair characteristics may also be informative of physical interaction. Therefore it is desirable to integrate multiple datasets and utilize their different predictive value for more accurate prediction of co-complexed relationship.  相似文献   

20.

Background  

With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号