首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) was purified 56-fold from Vicia faba root nodules to a specific activity of 24.8 units mg-1 protein. Native molecular mass was determined to be 443 kDa by gel permeation chromatography, whereas a molecular mass of 113 kDa was obtained for the subunit by means of SDS-PAGE, indicating that the enzyme is a homotetramer. One peak of activity was obtained by ion-exchange chromatography or gel filtration, and thus there was no evidence of isoenzymes. The effect of pH on PEPC activity was studied, the pH optimum found at 8.25. The effect of substrate (phosphoenolpyruvate, PEP) on the enzyme activity was studied at five different pH values from 6.5 to 9.5. The Km(PEP) at pH 8.25 proved to be 0.064 m M. Inhibition by malate or activation by glucose-6-phosphate was dependent on the pH of the reaction mixture. Malate behaved as a non-competitive mixed-type inhibitor with a Ki of 0.76 m M , a Ki(s) of 1.15 m M and a Ki(i) of 0.72 m M , at pH 7.0 while at pH 8.25 Ki was about 140 m M. Activation by glucose-6-P was 70% with 4 m M PEP at pH 7, whereas no effect was found at pH 8.25. Experiments with mixed effectors at pH 7 and 1 m M PEP, showed that glucose-6-P can reverse the inhibition caused by L-malate on the PEPC activity.  相似文献   

2.
The glucose-6-phosphatase system of the glucose sensitive insulin secreting rat insulinoma cells (INS-1) was investigated. INS-1 cells contain easily detectable levels of glucose-6-phosphatase enzyme protein (assessed by Western blotting) and have a very significant enzymatic activity. The features of the enzyme (Km and Vmax values, sensitivity to acidic pH, partial latency, and double immunoreactive band) are similar to those of the hepatic form. On the other hand, hardly detectable levels of glucose-6-phosphatase activity and protein were present in the parent glucose insensitive RINm5F cell line. The mRNA of the glucose-6-phosphate transporter was also more abundant in the INS-1 cells. The results support the view that the glucose-6-phosphatase system of the beta-cell is associated with the regulation of insulin secretion.  相似文献   

3.
Phosphoglucomutase (EC 2.7.5.1, PGM) was purified to homogeneity from maize (Zea mays L.) leaves. The enzyme had specific activity 11. 7 U/mg protein and molecular mass (determined by gel-chromatography) of 133 +/- 4 kD. The molecular mass of PGM subunits determined by SDS-electrophoresis was 66 +/- 3 kD. The enzyme had Km for glucose-1-phosphate and glucose-1,6-diphosphate of 20.0 +/- 0.9 and 16.0 +/- 0.8 &mgr;M, respectively. Concentrations of glucose-1-phosphate and glucose-1,6-diphosphate above 3 and 0.4 mM, respectively, cause substrate inhibition. The enzyme activity was maximal at pH 8.0 and temperature 35 degreesC. Magnesium ions activate the enzyme and manganese ions inhibit it. 3-Phosphoglycerate is an uncompetitive inhibitor of the enzyme (Ki = 1.22 +/- 0.05 mM). Fructose-6-phosphate, 6-phosphogluconate, and ADP activate PGM, whereas ATP, UTP, and AMP inhibit the enzyme. Citrate was also a potent inhibitor, inhibitory effects of isocitrate and cis-aconitate being less pronounced.  相似文献   

4.
A homogeneous preparation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) with a specific activity of 3.88 U/mg protein was isolated from pea (Pisum sativum L.) leaves. The molecular mass of the G6PDH is 79 +/- 2 kD. According to SDS-PAGE, the molecular mass of the enzyme subunit is 40 +/- 3 kD. The Km values for glucose-6-phosphate and NADP are 2 and 0.5 mM, respectively. The enzyme has a pH optimum of 8.0. Mg2+, Mn2+, and Ca2+ activate the enzyme at concentrations above 1 mM. Galactose-6-phosphate and fructose-6-phosphate inhibit the G6PDH from pea leaves. Fructose-1, 6-bisphosphate and galactose-1-phosphate are enzyme activators. NADPH is a competitive inhibitor of the G6PDH with respect to glucose-6-phosphate (Ki = 0.027 mM). ATP, ADP, AMP, UTP, NAD, and NADH have no effect on the activity of the enzyme.  相似文献   

5.
1. Glycogen synthase I (activity ratio approximately equal to 1) was purified over 10,000-fold from rabbit renal medulla. 2. The purified synthase was stimulated about 1.5-fold by glucose-6-P and other divalent anions when assayed at pH 7.7 and near saturating UDPGlc. When assayed at physiological UDPGlc (75-100 microM), the enzyme was stimulated about 5-fold by glucose-6-P. 3. At pH 7.7 the activation by either Na2SO4 or glucose-6-P was due to an increase in V and a decrease in S0.5 for UDPGlc. At pH. 6.9, activation was due to a decrease in S0.5. 4. At low UDPGlc, synthase activity was inhibited by adenine nucleotides and the inhibition was partially relieved by glucose-6-P, UDP inhibited in a competitive manner with respect to UDPGlc. 5. These results suggest that the activity of renal medullary synthase I may be regulated by cellular metabolites.  相似文献   

6.
Electrophoretically homogeneous phosphoglucomutase (PGM) with specific activity of 3.6 units/mg protein was isolated from pea (Pisum sativum L.) chloroplasts. The molecular mass of this PGM determined by gel-filtration is 125 +/- 4 kD. According to SDS-PAGE, the molecular mass of subunits is 65 +/- 3 kD. The Km for glucose-1-phosphate is 18.0 +/- 0.5 microM, and for glucose-1, 6-diphosphate it is 33 +/- 0.7 microM. At glucose-1-phosphate and glucose-1,6-diphosphate concentrations above 0.5 and 0.2 mM, respectively, substrate inhibition is observed. The enzyme has optimum activity at pH 7.9 and 35 degrees C. Mg2+ activates the PGM. Mn2+ activates the enzyme at concentrations below 0.2 mM, while higher concentrations have an inhibitory effect. The activity of the PGM is affected by 6-phosphogluconate, fructose-6-phosphate, NAD+, ATP, ADP, citrate, and isocitrate.  相似文献   

7.
1. Bistable (multiple stationary states) dynamic behaviour in the activity of glucose-6-phosphate dehydrogenase that was subjected to successive pH change was demonstrated in an open continuously stirred tank reactor. Although the enzyme under study did not exhibit an autocatalytic effect and was homogeneously distributed, bistability was shown to occur. 2. The successive pH changes of the enzyme solution corresponded to a pH transition (8.3 in equilibrium 2), i.e. an acidification (forward direction) and an alkalinization (reverse direction). By use of intrinsic protein fluorescence methods, a glucose-6-phosphate dehydrogenase conformational hysteresis was shown to exist concomitant with the pH transition before and after enzyme injection into the reactor. 3. The results obtained suggest that the enzyme behaves, conformationally, as a memory device that stores information about its pH history (i.e. the enzyme records information in its structure about the environment to which it was previously exposed) and transduces it in a non-linear dynamic fashion, producing the bistable behaviour observed in the open reactor.  相似文献   

8.
Summary A quantitative cytochemical assay for NAD+ kinase-like activity in the guinea-pig thyroid gland is described. The NADP+ produced by the activity of the kinase was used to drive the NADP+-dependent enzyme glucose-6-phosphate dehydrogenase which is endogenous to the tissue. The activity of glucose-6-phosphate dehydrogenase is greatly in excess of that of the kinase and was unaffected by the constituents of the kinase incubation medium (ATP, Mg2+ and NAD+) either alone or in combination. Kinase activity was dependent both on ATP and Mg2+, with maximal activity seen when the Mg-ATP ratio was between 1:1 and 4:1. Free ATP inhibited the activity of the enzyme. Enzyme activity was exhibited over a broad pH range (7–9) with a peak at pH 8.2. The sulphhydryl-blocking agents,p-chloromercuribenzoate, iodoacetate and iodoacetamide (at 1 mM), completely abolished kinase activity but were without effect on glucose-6-phosphate dehydrogenase activity.N-ethylmaleimide and citrate (both at 1 mM) had no effect on either kinase or glucose-6-phosphate dehydrogenase activities.  相似文献   

9.
A method is described for the incorporation of a microsomal rat liver fraction into polyacrylamide films without significant loss of its glucose-6-phosphatase activity. The enzymatic activity was completely lost when the films were prepared with ammonium persulfate as initiator of the polymerization as previously described for alkaline phosphatase, but modification of this method showed that about 90% of the glucose-6-phosphatase activity could be retained. The enzyme in the films prepared with the new method was completely inhibited by alloxan, HgCl2, and preincubation in 0.05 M acetate buffer (pH 5.0) at 37 degrees C, as determined biochemically. Similar results were obtained for the enzyme in films determined histochemically according to the lead method of Wachstein and Meisel. In this respect the behavior of the incorporated enzyme is similar to that in suspension. Films fixed with 1.5% glutaraldehyde showed rapid inactivation of glucose-6-phosphatase. There was good correlation between the biochemical and histochemical activity determined after fixation. A method to embed polyacrylamide films in Epon for electron-microscopical investigation is also described. Dimethyl sulfoxide was used as the dehydrating agent instead of ethanol/acetone.  相似文献   

10.
Glucose-6-phosphate dehydrogenase [D-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 X 10(-4) M for glucose-6-phosphate and 2.4 X 10(-4) M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucose-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

11.
K. J. Lendzian 《Planta》1978,141(1):105-110
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly affected by interactions between Mg2+, proton, and substrate concentrations. Mg2+ activates the enzyme to different degrees; however, it is not essential for enzyme activity. The Mg2+-dependent activation follows a maximum curve, magnitude and position of the maximum being dependent on pH and NADPH/NADP+ ratios. At a ratio of zero and pH 7.2, maximum activity is observed at 10 mM Mg2+. Increasing the NADPH/NADP+ ratio up to 1.7 (a ratio measured in the stroma during a light period), maximum activity is shifted to much lower Mg2+ concentrations. At pH 8.2 (corresponding to the pH of the stroma in the light) and at a high NADPH/NADP+ ratio, enzyme activity is not affected by the Mg2+ ion. The results are discussed in relation to dark-light-dark regulation of the oxidative pentose phosphate cycle in spinach chloroplasts.Abbreviations DTT dithiothreitol - G-6-P glucose-6-phosphate - G-6-PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - PPC pentose phosphate cycle  相似文献   

12.
The effect of estrogen on synthesis of glucose-6-phosphate dehydrogenase (D-Glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) in the R3230AC mammary adenocarcinoma of ovariectomized Fischer rats was investigated. Enzyme synthesis was estimated by techniques using immunochemica precipitation and isolation of enzyme protein from tissues of rats that had been given radioactive leucine prior to sacrifice. The antibody-enzyme complex was dissociated and glucose-6-phosphate dehydrogenase was isolated after electrophoresis on sodium dodecyl sulfate-acrylamide gels. Administration of estradiol-17beta produced a two-fold increase in glucose-6-phosphate dehydrogenase activity, which was preceded by a five-fold increase in specific synthesis of glucose-6-phosphate dehydrogenase in R3230AC tumors. At least a 15-fold increase in enzyme synthesis was observed in the uterus. The rate of enzyme degradation (t 1/2) in the tumor was estimated at 17 h. These data indicate that the estrogen-induced increase in glucose-6-phosphate dehydrogenase activity was due to a de novo increase in enzyme synthesis.  相似文献   

13.
We have examined the influence of the phenobarbital-induced proliferation of the hepatic endoplasmic reticulum (ER) on the activities of the components of the glucose-6-phosphatase system, i.e., the enzyme, the glucose-6-P translocase (T1), and the phosphate translocase (T2). Young male rats were injected ip twice daily for 4 days with 4 mg/100 g body wt of phenobarbital (PB) or an equivalent volume of saline solution. On the fifth day, the rats were killed and smooth (SER) and rough (RER) fractions of the ER were isolated from liver homogenates. Kinetic constants for glucose-6-P hydrolysis by the system and enzyme were determined and used to calculate the kinetic constants for glucose-6-P transport. T2 activity was approximated by assaying the pyrophosphatase activity at pH 6.0 in intact microsomes. Three times more SER protein was recovered from livers of PB-treated rats. PB-treatment did not alter total liver enzyme activity, but total liver T1 activity was decreased to 59% of the control value. Maximal specific activities of the system, enzyme and T1 were all reduced by PB treatment to 44% of control values in the RER and to 68% of control values in the SER. PB treatment reduced the apparent activity of T2 in RER and SER to 35 and 49% of the respective control values. In the SER from both groups of rats, T1 activity or apparent T2 activity divided by enzyme activity was about 55% of the corresponding ratio in the RER. Our analysis of these data suggests that the lower activities of T1 and T2 in the smooth ER are the results of suppression by some intrinsic component localized in the smooth membrane. Accordingly, the reduction in total liver T1 activity and, therefore, system activity in PB-treated rats reflects the redistribution of the glucose-6-P translocase from the RER to the more abundant SER membrane where it is less active. The possibility is discussed that a higher cholesterol content within the SER membrane is responsible for the lower transport activities.  相似文献   

14.
Illumination of intact chloroplasts and treatment of chloroplast stroma with dithiothreitol (DTT) both inactivate glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) to less than 10% apparent activity when assayed under standard conditions. Illumination of intact protoplasts and incubation of leaf extract with DTT inactivate about 25-35% of the total G6PDH activity. In the leaf extract, however, further loss of activity is observed if NADP is absent. Light- and DTT-inactivated chloroplast G6PDH can be reactivated by oxidation with sodium tetrathionate or the thiol oxidant diamide. Chloroplast G6PDH is as sensitive toward reductive enzyme modulation in a stromal extract as are other light/dark modulated enzymes, e.g., NADP-malate dehydrogenase. Also, glutathione, provided it is kept reduced, is sufficient to cause inactivation. Light- and DTT-induced inactivation are shown to be due to a Km shift with respect to glucose-6-phosphate (G6P) from 1 to 35 and 43 mM, respectively, and with respect to NADP from 10 to 50 microM without any significant change of the Vmax. NADPH competitively (NADP) inhibits the enzyme (Ki = 8 microM). Reactivation by oxidation can be explained by an enhanced affinity of the oxidized enzyme toward G6P and NADP. The pH optimum of the reduced enzyme is more in the alkaline region (pH 9-9.5) as compared to that of the oxidized form (pH 8.0). The presence of 30 mM phosphate causes a shift of 0.5 to 1.0 pH unit into the alkaline region for both forms.  相似文献   

15.
Summary Two new glucose-6-phosphate dehydrogenase (G6PD) variants were discovered in Japan. The first, found in a 9-year-old male, was associated with chronic hemolysis and hemolytic crises after upper respiratory infections. The enzyme activity of the variant was 2.9% of normal. The patient's G6PD showed an increased utilization of substrate analogue, deamino-NADP, and thermal instability. The second variant occurred in a 7-year-old male with druginduced hemolysis. The main enzymatic characteristics were reduced enzyme activity, being 6.4% of normal, faster-thannormal anodal electrophoretic mobility, slightly high Michaelis constant for glucose-6-phosphate, thermal instability, and biphasic pH optima. Enzymatic properties of these variants allowed each to be distinguished from previously reported variants. The first variant was designated Gd (-) Gifu and the other, Gd (-) Fukuoka.  相似文献   

16.
Phosphohexose isomerase from amyloplasts of immature wheat endosperm was purified 133-fold. The enzyme had a molecular weight of 130 kDa and maximum activity at pH 8.6. It showed normal hyperbolic kinetics for both fructose-6-P and glucose-6-P with Km of 0.12 mM and 0.44 mM, respectively. pH had a great influence on Km for fructose-6-P. Using glucose-6-P as the substrate, the equilibrium was reached at 23% fructose-6-P and 77% glucose-6-P and an equilibrium constant of about 3.0. The delta F calculated from the apparent equilibrium constant was +742 cal.mol-1. The activation energy calculated from the Arrhenius plot was 7450 cal.mol-1. None of the sulphydryl reagents at 2.5 mM concentration inactivated the enzyme. The enzyme was competitively inhibited by 6-phosphogluconate, ribose-5-P and ribulose-5-P with Ki values of 0.18, 0.14, and 0.13 mM, respectively. The probable role of the enzyme in starch biosynthesis in amyloplasts is discussed.  相似文献   

17.
One acid phosphatase (optimum pH at 5.4) was purified from maize scutellum after 96 hr of germination. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulfate (SDS). The enzyme has a MW of 65 000 ± 4000 as determined by Sephadex G-200 gel filtration and SDS-PAGE. The enzyme contained 16% neutral sugars, and cations are not required for activity. The purified enzyme was not inactivated by DTNB at pH 8. The hydrolysis of glucose-6-phosphate in the presence of 4 mM fluoride and 4 mm EDTA, at pH 6.7 (optimum pH), seems to be catalysed by this acid phosphatase.  相似文献   

18.
The role of phospholipids in the glucose-6-phosphatase system, including glucose-6-P phosphohydrolase and glucose-6-P translocase, was studied in rat liver microsomes by using phospholipases C and detergents. In the time course experiments on detergent exposure, the maximal activation of glucose-6-P phosphohydrolase varied according to the nature of the detergent used. On treatment of microsomes with phospholipase C of C. perfringens, the activity of glucose-6-P phosphohydrolase without detergent (i.e. without rupture of translocase activity) was gradually decreased with the progressive hydrolysis of phosphatidylcholine and phosphatidylethanolamine on the microsomal membrane, and was restored by incubation of these microsomes with egg yolk phospholipids. The extent of decrease in this phosphohydrolase activity in the detergent-exposed microsomes (with rupture of translocase activity) also varied depending on the detergent used (Triton X-114 or taurocholate). When 66% of the phosphatidylinositol on the membrane was hydrolyzed by phosphatidylinositol-specific phospholipase C of B. thuringiensis, the inhibition of glucose-6-P phosphohydrolase activity without detergent was very small. Although the inhibition of enzyme activity with detergent was apparently greater than that without detergent, the enzyme activity was stimulated by the breakdown of phosphatidylinositol when the enzyme activity was measured at lower concentration (0.5 mM) of substrate, glucose-6-P. The latency of mannose-6-P phosphohydrolase, a plausible index of microsomal integrity, remained above 70% after the hydrolysis of phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol. The results show that the glucose-6-phosphatase system requires microsomal phospholipids for its integrity, suggesting that there exists a close relation between phosphatidylinositol and glucose-6-P translocase.  相似文献   

19.
The NADP-linked glucose-6-phosphate dehydrogenase from Acetobacter hansenii (formerly known as Acetobacter xylinum) has been purified to apparent homogeneity. The sequence of the 10 N-terminal amino acids was determined. The subunit molecular weight of the enzyme is 53,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; gel filtration studies under nondenaturing conditions revealed that the molecular weight of the enzyme is 200,000 to 220,000 at pH 6.5 and 9.5, suggesting that the native enzyme is a tetramer. Specificity studies at both pH 6.5 and 9.5 demonstrated that the enzyme is a typical NADP-preferring glucose-6-phosphate dehydrogenase. The enzyme's catalytic activity increases with increasing pH, kcat being approximately 4 times greater at pH 9.5 than at pH 6.7 and the Km for NADP+ being 3 times lower at the higher pH; but the Km for glucose 6-phosphate is nearly 20 times higher at pH 9.5 than at pH 6.7, suggesting that the enzyme is catalytically more efficient at the lower pH. At pH 6.7, initial velocity measurements, product inhibition by NADPH, and inhibition by glucosamine 6-phosphate yielded results that were consistent with a steady-state random mechanism. At pH 9.5, steady-state kinetic analyses suggested that the mechanism is ordered, with coenzyme binding first, but nonlinear double-reciprocal plots were observed in the presence of NADPH when glucose 6-phosphate was varied and a complete kinetic analysis was not undertaken. Among several nucleotides and potential inhibitory ligands examined, only 2',5'-ADP inhibited the enzyme significantly.  相似文献   

20.
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号