首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A necessary mediator of cardiac myocyte enlargement is protein synthesis, which is controlled at the levels of both translation initiation and elongation. Eukaryotic elongation factor-2 (eEF2) mediates the translocation step of peptide-chain elongation and is inhibited through phosphorylation by eEF2 kinase. In addition, p70S6 kinase can regulate protein synthesis by phosphorylating eEF2 kinase or via phosphorylation of ribosomal protein S6. We have recently shown that eEF2 kinase is also controlled by phosphorylation by AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis. Moreover, the mammalian target of rapamycin has also been shown to be inhibited, indirectly, by AMPK, thus leading to the inhibition of p70S6 kinase. Although AMPK activation has been shown to modulate protein synthesis, it is unknown whether AMPK could also be a regulator of cardiac hypertrophic growth. Therefore, we investigated the role of AMPK activation in regulating protein synthesis during both phenylephrine- and Akt-induced cardiac hypertrophy. Metformin and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside were used to activate AMPK in neonatal rat cardiac myocytes. Activation of AMPK significantly decreased protein synthesis induced by phenylephrine treatment or by expression of constitutively active Akt. Activation of AMPK also resulted in decreased p70S6 kinase phosphorylation and increased phosphorylation of eEF2, suggesting that inhibition of protein synthesis involves the eEF2 kinase/eEF2 axis and/or the p70S6 kinase pathway. Together, our data suggest that the inhibition of protein synthesis by pharmacological activation of AMPK may be a key regulatory mechanism by which hypertrophic growth can be controlled.  相似文献   

3.
The complex cytopathology of mitochondrial diseases is usually attributed to insufficient ATP. AMP-activated protein kinase (AMPK) is a highly sensitive cellular energy sensor that is stimulated by ATP-depleting stresses. By antisense-inhibiting chaperonin 60 expression, we produced mitochondrially diseased strains with gene dose-dependent defects in phototaxis, growth, and multicellular morphogenesis. Mitochondrial disease was phenocopied in a gene dose-dependent manner by overexpressing a constitutively active AMPK alpha subunit (AMPKalphaT). The aberrant phenotypes in mitochondrially diseased strains were suppressed completely by antisense-inhibiting AMPKalpha expression. Phagocytosis and macropinocytosis, although energy consuming, were unaffected by mitochondrial disease and AMPKalpha expression levels. Consistent with the role of AMPK in energy homeostasis, mitochondrial "mass" and ATP levels were reduced by AMPKalpha antisense inhibition and increased by AMPKalphaT overexpression, but they were near normal in mitochondrially diseased cells. We also found that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, a pharmacological AMPK activator in mammalian cells, mimics mitochondrial disease in impairing Dictyostelium phototaxis and that AMPKalpha antisense-inhibited cells were resistant to this effect. The results show that diverse cytopathologies in Dictyostelium mitochondrial disease are caused by chronic AMPK signaling not by insufficient ATP.  相似文献   

4.
Fu SG  Liu PQ  Lu W  Gong SZ  Pan JY 《生理学报》2000,52(4):318-322
实验用硝酸还原酶法测定培养新生大鼠内肌细胞亚硝酸盐(NO2)和硝酸盐(NO3)总量(NO2/NO3),反映心肌细胞一氧化氮(NO)生成情况,观察血管紧张素Ⅱ(AngⅡ)对凡肌细胞NO生成的及其蛋白激酶C(PKC)在该效应中的作用。结果显示:AngⅡ可减少心肌细胞NO的含量,并具有明显的剂量-效应关系;AngⅡ受体拮抗剂saralasin可明显抵制AngⅡ对NO生成的影响;L-精氨酸(L-Arg)明  相似文献   

5.
The surrounding medium of periodontal pathogen Porphyromonas gingivalis (P. gingivalis) increased cardiomyocyte hypertrophy and apoptosis whereas Actinobaeillus actinomycetemcomitans and Prevotella intermedia had no effects. The purpose of this study is to clarify the role of p38 pathway in P. gingivalis conditioned medium-induced H9c2 myocardial cell hypertrophy and apoptosis. DNA fragmentation, cellular morphology, nuclear condensation, p38 protein products, and mitochondrial-dependent apoptotic related proteins in cultured H9c2 myocardial cell were measured by agarose gel electrophoresis, immunofluorescence, DAPI, and western blotting following P. gingivalis conditioned medium and/or pre-administration of SB203580 (p38 inhibitor). The p38 protein products and associated activities in H9c2 cells were both upregulated by P. gingivalis conditioned medium. P. gingivalis conditioned medium increased cellular sizes, DNA fragmentation, nuclear condensation, mitochondrial Bcl2-associated death promoter (Bad), cytosolic cytochrome c (cyt c), and the activated form of caspase-9 proteins in H9c2 cells. The increased cellular sizes, DNA fragmentation, nuclear condensation, Bad, cyt c, and caspase-9 activities of H9c2 cells treated with P. gingivalis conditioned medium were all significantly reduced after pre-administration of SB203580. Our findings suggest that the activity of p38 signal pathway may be initiated by P. gingivalis conditioned medium and further activate mitochondrial-dependent apoptotic pathways leading to cell death in cultured H9c2 myocardial cells.  相似文献   

6.
Changes in activity or expression of protein kinase C (PKC), reactive oxygen products, and nitric oxide (NO) may account for the alteration in cell behavior seen in diabetes. These changes have been proposed to be part of the pathophysiology of erectile dysfunction. We sought to ascertain if corpus cavernosal vascular smooth muscle cells (CCSMC) grown in a high glucose milieu exhibit changes in the activity and expression of PKC isoforms, NO, and reactive oxygen products and to find out if these changes are prevented by alpha-tocopherol. Rat CCSMC were grown in 5, 15, and 30 mM glucose concentrations for 3, 7, and 14 days. PKC isoform expression was assayed with isoform-specific antibodies. In CCSMCs grown in 30 mM glucose for 2-wk, PKC-beta(2)-isoform was upregulated (n = 4; P < 0.01), whereas the expression of alpha-, delta-, epsilon-, and beta(1)-isoforms was unchanged. NO as measured by nitrate-to-nitrite ratio was greatly diminished at 14 days in 30 mM (n = 4; P < 0.002) compared with 5 mM glucose. Reactive oxygen products were upregulated at 14 days when they were assayed by the fluorescent probe dichlorofluorescein diacetate bis(acetoxy-methyl) (DCFH-DA) (n = 5; P < 0.01). When these same cells were exposed to alpha-tocopherol for 14 days, there was a reduction of PKC-beta(2) (57.8%; P < 0.01; n = 4) and a reduction in reactive oxygen product formation (71.1%; P < 0.001; n = 4), along with an increase in nitrate-to-nitrite ratio (43.9%; P < 0.01, n = 4). These results suggest that there may be an interrelationship between PKC, NO, and reactive oxygen product formation in CCSMC exposed to a high glucose environment.  相似文献   

7.
Oxygen deprivation leads to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), causing ER stress. Under conditions of ER stress, inhibition of protein synthesis and up-regulation of ER chaperone expression reduce the misfolded proteins in the ER. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in energy homeostasis during hypoxia. It has been shown that AMPK activation is associated with inhibition of protein synthesis via phosphorylation of elongation factor 2 (eEF2) in cardiomyocytes. We therefore examined whether AMPK attenuates hypoxia-induced ER stress in neonatal rat cardiomyocytes. We found that hypoxia induced ER stress, as assessed by the expression of CHOP and BiP and cleavage of caspase 12. Knockdown of CHOP or caspase 12 through small interfering RNA (siRNA) resulted in decreased expression of cleaved poly(ADP-ribose) polymerase following exposure to hypoxia. We also found that hypoxia-induced CHOP expression and cleavage of caspase 12 were significantly inhibited by pretreatment with 5-aminoimidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), a pharmacological activator of AMPK. In parallel, adenovirus expressing dominant-negative AMPK significantly attenuated the cardioprotective effects of AICAR. Knockdown of eEF2 phosphorylation using eEF2 kinase siRNA abolished these cardioprotective effects of AICAR. Taken together, these findings demonstrate that activation of AMPK contributes to protection of the heart against hypoxic injury through attenuation of ER stress and that attenuation of protein synthesis via eEF2 inactivation may be the mechanism of cardioprotection by AMPK.  相似文献   

8.
Brief periods of ischemia and reperfusion that precede sustained ischemia lead to a reduction in myocardial infarct size. This phenomenon, known as ischemic preconditioning, is mediated by signaling pathway(s) that is complex and yet to be fully defined. AMP-activated kinase (AMPK) is activated in cells under conditions associated with ATP depletion and increased AMP/ATP ratio. In the present study, we have taken advantage of a cardiac phenotype overexpressing a dominant negative form of the alpha2 subunit of AMPK to analyze the role, if any, that AMPK plays in preconditioning the heart. We have found that myocardial preconditioning activates AMPK in wild type, but not transgenic mice. Cardiac cells from transgenic mice could not be preconditioned, as opposed to cells from the wild type. The cytoprotective effect of AMPK was not related to the effect that preconditioning has on mitochondrial membrane potential as revealed by JC-1, a mitochondrial membrane potential-sensitive dye, and laser confocal microscopy. In contrast, experiments with di-8-ANEPPS, a sarcolemmal-potential sensitive dye, has demonstrated that intact AMPK activity is required for preconditioning-induced shortening of the action membrane potential. The preconditioning-induced activation of sarcolemmal K(ATP) channels was observed in wild type, but not in transgenic mice. HMR 1098, a selective inhibitor of sarcolemmal K(ATP) channels opening, inhibited preconditioning-induced shortening of action membrane potential as well as cardioprotection afforded by AMPK. Immunoprecipitation followed by Western blotting has shown that AMPK is essential for preconditioning-induced recruitment of sarcolemmal K(ATP) channels. Based on the obtained results, we conclude that AMPK mediates preconditioning in cardiac cells by regulating the activity and recruitment of sarcolemmal K(ATP) channels without being a part of signaling pathway that regulates mitochondrial membrane potential.  相似文献   

9.
Mutations in cereblon (CRBN), a substrate binding component of the E3 ubiquitin ligase complex, cause a form of mental retardation in humans. However, the cellular proteins that interact with CRBN remain largely unknown. Here, we report that CRBN directly interacts with the α1 subunit of AMP-activated protein kinase (AMPK α1) and inhibits the activation of AMPK activation. The ectopic expression of CRBN reduces phosphorylation of AMPK α1 and, thus, inhibits the enzyme in a nutrient-independent manner. Moreover, AMPK α1 can be potently activated by suppressing endogenous CRBN using CRBN-specific small hairpin RNAs. Thus, CRBN may act as a negative modulator of the AMPK signaling pathway in vivo.  相似文献   

10.
11.
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that is a key regulator of energy balance at both the cellular and whole-body level. AMPK acts to stimulate ATP production and reduce ATP consumption when cellular ATP levels fall, thereby normalizing energy balance. Given the central role of AMPK in cellular carbohydrate and lipid metabolism, AMPK activation has been proposed to be a therapeutic target for conditions associated with dysfunctional nutrient metabolism including obesity, type 2 diabetes, hepatic steatosis, cardiovascular diseases and cancer. One way by which increased ATP production can be achieved is by increasing the supply of nutrient substrates. In the 1990s, AMPK activation was demonstrated to stimulate glucose uptake in striated muscle, thereby improving substrate supply for ATP production. Subsequently AMPK activation was postulated to underlie the increase in glucose uptake that occurs during muscle contraction. More recently, however, several lines of evidence have demonstrated that AMPK activation is unlikely to be required for contraction-mediated glucose uptake. Furthermore, despite the importance of AMPK in cellular and whole-body metabolism, far fewer studies have investigated either the role of AMPK in glucose uptake by non-muscle tissues or whether AMPK regulates the uptake of fatty acids. In the present review, we discuss the role of AMPK in nutrient uptake by tissues, focusing on glucose uptake out with muscle and fatty acid uptake.  相似文献   

12.
13.
This study was designed to examine activity of AMP-activated protein kinase kinase (AMPKK) in muscles from nontrained and endurance-trained rats. Rats were trained 5 days/wk, 2 h/day for 8 wk at a final intensity of 32 m/min up a 15% grade with 30-s sprints at 53 m/min every 10 min. Gastrocnemius muscles were stimulated in situ in trained and nontrained rats for 5 min at frequencies of 0.4/s and 1/s. Gastrocnemius LKB1 protein, a putative component of the AMPKK complex (LKB1, STRAD, and MO25), increased approximately twofold in response to training. Phosphorylation of AMP-activated protein kinase (AMPK) determined by Western blot and AMPK activity of immunoprecipitates (both isoforms) was increased at both stimulation rates in both trained and nontrained muscles. AMPKK activity was 73% lower in resuspended polyethylene glycol precipitates of muscle extracts from the trained compared with nontrained rats. AMPKK activity did not increase in either trained or nontrained muscle in response to electrical stimulation, even though phospho-AMPK did increase. These results suggest that AMPKK is activated during electrical stimulation of both trained and nontrained muscle by mechanisms other than covalent modification.  相似文献   

14.
Winder, W. W., H. A. Wilson, D. G. Hardie, B. B. Rasmussen,C. A. Hutber, G. B. Call, R. D. Clayton, L. M. Conley, S. Yoon, and B. Zhou. Phosphorylation of rat muscle acetyl-CoA carboxylase byAMP-activated protein kinase and protein kinase A. J. Appl. Physiol. 82(1): 219-225, 1997This studywas designed to compare functional effects of phosphorylation of muscleacetyl-CoA carboxylase (ACC) by adenosine 3,5-cyclicmonophosphate-dependent protein kinase (PKA) and by AMP-activatedprotein kinase (AMPK). Muscle ACC (272 kDa) was phosphorylated and thensubjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresisfollowed by autoradiography. Functional effects of phosphorylation weredetermined by measuring ACC activity at different concentrations ofeach of the substrates and of citrate, an activator of the enzyme. Themaximal velocity(Vmax) and theMichaelis constants(Km) for ATP,acetyl-CoA, and bicarbonate were unaffected by phosphorylation by PKA.Phosphorylation by AMPK increased theKm for ATP andacetyl-CoA. Sequential phosphorylation by PKA and AMPK, first withoutlabel and second with label, appeared to reduce the extent of label incorporation, regardless of the order. The activation constant (Ka) forcitrate activation was increased to the same extent by AMPKphosphorylation, regardless of previous or subsequent phosphorylation by PKA. Thus muscle ACC can be phosphorylated by PKA but with noapparent functional effects on the enzyme. AMPK appears to be the moreimportant regulator of muscle ACC.

  相似文献   

15.
AMP-activated protein kinase (AMPK) is an energy sensing/signaling protein that, when activated, increases ATP production by stimulating glucose uptake and fatty acid oxidation while at the same time inhibiting ATP=consuming processes such as protein synthesis. Chronic activation of AMPK inhibits expression of lipogenic enzymes in the liver and enhances expression of mitochondrial oxidative enzymes in skeletal muscle. Deficiency of muscle LKB1, the upstream kinase of AMPK, results in greater fluctuation in energy charge during muscle contraction and decreased capacity for exercise at higher work rates. Because AMPK enhances both glucose uptake and fatty acid oxidation in skeletal muscle, it has become a target for prevention and treatment of type 2 diabetes and obesity.  相似文献   

16.
17.
Prior studies utilizing neurons cultured from the hypothalamus and brain stem of newborn rats have demonstrated that ANG II-induced modulation of neuronal firing involves activation of both protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II (CaMKII). The present studies were performed to determine whether these signaling molecules are also involved in physiological responses elicited by ANG II in the brain in vivo. Central injection of ANG II (10 ng/2 microl) into the lateral cerebroventricle (icv) of Sprague-Dawley rats increased water intake in a time-dependent manner. This ANG II-mediated dipsogenic response was attenuated by central injection of the PKC inhibitors chelerythrine chloride (0.5-50 microM, 2 microl) and Go-6976 (2.3 nM, 2 microl) and by the CaMKII inhibitor KN-93 (10 microM, 2 microl). Conversely, icv injection of chelerythrine chloride (50 microM, 2 microl) and KN-93 (10 microM, 2 microl) had no effect on the dipsogenic response elicited by central injection of carbachol (200 ng/2 microl). Furthermore, injection of ANG II (10 ng/2 microl) icv increases the activity of both PKC-alpha and CaMKII in rat septum and hypothalamus. These data suggest that signaling molecules involved in ANG II-induced responses in vitro are also relevant in physiological responses elicited by ANG II in the whole animal model.  相似文献   

18.
Elevated levels of free fatty acids contribute to cardiovascular diseases, but the mechanisms remain poorly understood. The present study was aimed to determine if free fatty acid inhibits the AMP-activated kinase (AMPK). Exposure of cultured bovine aortic endothelial cells (BAECs) to palmitate (0.4 mM) but not to palmitoleic or oleic acid (0.4 mM) for 40 h significantly reduced the Thr(172) phosphorylation of AMPK-alpha without altering its protein expression or the phosphorylation of LKB1-Ser(428), a major AMPK kinase in BAECs. Further, in LKB1-deficient cells, palmitate suppressed AMPK-Thr(172) implying that the inhibitory effects of palmitate on AMPK might be independent of LKB1. In contrast, 2-bromopalmitate, a non-metabolizable analog of palmitate, did not alter the phosphorylation of AMPK and acetyl-CoA carboxylase. Further, palmitate significantly increased the activity of protein phosphatase (PP)2A. Inhibition of PP2A with either okadaic acid, a selective PP2A inhibitor, or PP2A small interference RNA abolished palmitate-induced inhibition on AMPK-Thr(172) phosphorylation. Exposure of BAECs to C(2)-ceramide, a cell-permeable analog of ceramide, mimicked the effects of palmitate. Conversely, fumonisin B1, which selectively inhibits ceramide synthase and decreases de novo formation of ceramide, abolished the effects of palmitate on both PP2A and AMPK. Inhibition of AMPK in parallel with increased PP2A activity was founded in C57BL/6J mice fed with high fat diet (HFD) rich in palmitate but not in mice fed with HFD rich in oleate. Moreover, inhibition of PP2A with PP2A-specific siRNA but not scrambled siRNA reversed HFD-induced inhibition on the phosphorylation of AMPK-Thr(172) and endothelial nitric-oxide synthase (eNOS)-Ser(1177) in mice fed with high fat diets. Taken together, we conclude that palmitate inhibits the phosphorylation of both AMPK and endothelial nitric-oxide synthase in endothelial cells via ceramide-dependent PP2A activation.  相似文献   

19.
Data from the use of activators and inhibitors of the AMP-activated protein kinase (AMPK) suggest that AMPK increases sensitivity of glucose transport to stimulation by insulin in muscle cells. We assayed insulin action after adenoviral (Ad) transduction of constitutively active (CA; a truncated form of AMPK1) and dominant-negative (DN; which depletes endogenous AMPK) forms of AMPK (Ad-AMPK-CA and Ad-AMPK-DN, respectively) into C2C12 myotubes. Compared with control (Ad-green fluorescent protein), Ad-AMPK-CA increased the ability of insulin to stimulate glucose transport. The increased insulin action in cells expressing AMPK-CA was suppressed by compound C (an AMPK inhibitor). Exposure of cells to 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (an AMPK activator) increased insulin action in uninfected myotubes and myotubes transduced with green fluorescent protein but not in Ad-AMPK-DN-infected myotubes. In Ad-AMPK-CA-transduced cells, serine phosphorylation of insulin receptor substrate 1 was decreased at a mammalian target of rapamycin (or p70 S6 kinase) target site that has been reported to be associated with insulin resistance. These data suggest that, in myotubes, activated AMPK1 is sufficient to increase insulin action and that the presence of functional AMPK is required for 5-aminoimidazole-4-carboxamide-1,D-ribofuranoside-related increases in insulin action. compound C; AMPK; insulin sensitivity; Akt; mTOR  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号