首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Achieving a (??m)Tc-labeled fluoroquinolone derivative as a single photon emission computed tomography (SPECT) tracer is considered to be of great interest. The norfloxacin dithiocarbamate (NFXDTC) was synthesized and radiolabeled with a [(??m)TcN]2(+) intermediate to form the (??m)TcN-NFXDTC complex in high yield. The radiochemical purity of (??m)TcN-NFXDTC was over 90%, as measured by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), without any notable decomposition at room temperature over a period of 6 h. The partition coefficient and electrophoresis results indicated that (??m)TcN-NFXDTC was lipophilic and neutral. The bacterial binding assay studies showed tht (??m)TcN-NFXDTC had a good binding affinity. Biodistribution results in bacterial infected mice showed that (??m)TcN-NFXDTC had a higher uptake at the sites of infection and better abscess/blood and abscess/muscle ratios than those of (??m)Tc-ciprofloxacin and (??m)TcN-CPFXDTC (CPFXDTC = ciprofloxacin dithiocarbamate). The biodistribution results of (??m)TcN-NFXDTC in bacterially infected mice and in mice with turpentine-induced abscesses indicated that (??m)TcN-NFXDTC was suited to be a bacteria-specific infection imaging agent. Single photon emission computed tomography (SPECT) image studies showed there was a visible accumulation in infection sites, suggesting that it would be a promising candidate for bacterial infection imaging.  相似文献   

2.
The ciprofloxacin dithiocarbamate (CPFXDTC) was radiolabeled with [99mTc(CO)3(H2O)3]+ intermediate to form the 99mTc(CO)3–CPFXDTC complex in high yield. The 99mTc(CO)3–CPFXDTC complex was characterized by HPLC and its stability in serum was studied. Its partition coefficient indicated that it was a lipophilic complex. The bacterial binding efficiency of 99mTc(CO)3–CPFXDTC was almost the same as that of 99mTcN–CPFXDTC, and was higher than that of 99mTc–ciprofloxacin. Biodistribution results in induced infection mice showed 99mTc(CO)3–CPFXDTC had higher uptake at the sites of infection and better abscess/blood and abscess/muscle ratios than those of 99mTc–ciprofloxacin and 99mTcN–CPFXDTC. Single photon emission computed tomography (SPECT) static imaging study in infected rabbits demonstrated the uptake in the left thigh infection lesion was observable, while no accumulation in the right thigh muscle was found. These results suggested 99mTc(CO)3–CPFXDTC would be a promising candidate for further evaluation as infection imaging agent.  相似文献   

3.
A HYNIC-conjugated chemotactic peptide (fMLFK-HYNIC) was labeled with (99m)Tc using tricine and TPPTS as coligands. The combination of fMLFK-HYNIC, tricine, and TPPTS with (99m)Tc produced a ternary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(TPPTS)] (RP463). RP463 was synthesized either in two steps, in which the binary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(2)] (RP469) was formed first and then reacted with TPPTS, or in one step by direct reduction of [(99m)Tc]pertechnetate with stannous chloride in the presence of fMLFK-HYNIC, tricine, and TPPTS. The radiolabeling yield for RP463 was usually >/=90% using 10 microg of fMLFK-HYNIC and 100 mCi of [(99m)Tc]pertechnetate. Unlike RP469, which decomposed rapidly in the absence of excess tricine coligand, RP463 was stable in solution for at least 6 h. [(99)Tc]RP463 was prepared and characterized by HPLC and electrospray mass spectrometry. In an in vitro assay, [(99)Tc]RP463 showed an IC(50) of 2 nM against binding of [(3)H]fMLF to receptors on PMNs. [(99)Tc]RP463 also induces effectively the superoxide release of polymorphonuclear leukocytes (PMNs) with an EC(50) value of 0.2 +/- 0.2 nM. The localization of RP463 in the infection foci was assessed in a rabbit infection model. RP463 was cleared from the blood faster than RP469 and was excreted mainly through the renal system. As a result of rapid blood clearance and increased uptake, the target-to-background ratios continuously increased from 1.5 +/- 0.2 at 15 min postinjection to 7.5 +/- 0.4 at 4 h postinjection. Visualization of the infected area could be as early as 2 h. A transient decrease in white blood cell count of 35% was observed during the first 30 min after injection of the HPLC-purified RP463 in the infected rabbit. This suggests that future research in this area should focus on developing highly potent antagonists for chemotactic peptide receptor or other receptors on PMNs and monocytes.  相似文献   

4.
This report describes the (99m)Tc labeling of a HYNIC-conjugated vitronectin receptor antagonist (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo[Lys-Arg-Gly-Asp-D-Phe])-cyclo[Lys-Arg-Gly-Asp-D-Phe]). The ternary ligand complex [(99m)Tc(SQ168)(tricine)(TPPTS)] (RP593) was prepared using a non-SnCl(2)-containing formulation. The corresponding (99)Tc analogue, [(99)Tc]RP593, was also prepared and characterized by HPLC and LC-MS. A HPLC concordance experiment using RP593 and [(99)Tc]RP593 showed that the same technetium complex was prepared at both the tracer and macroscopic levels. The LC-MS data is completely consistent with the 1:1:1:1 composition for Tc:SQ168:tricine:TPPTS and provides direct evidence that the two radiometric peaks in the radio-HPLC chromatogram of RP593 are indeed due to the resolution of diastereomers. In an in vitro receptor binding assay, [(99)Tc]RP593 was shown to have comparable binding affinity for the vitronectin receptor to that of SQ168 itself.  相似文献   

5.
Heterobifunctional (99m)Tc ligands are useful for antibody labeling using the precomplexation route. The aim of this work was to synthesize a ligand, which has sufficient chemical stability to be complexed with (99m)Tc without inactivating the reactive conjugation group. Using 2,3,5,6-tetrafluorophenyl N-(S-benzoylthioacetyl)glycylglycyl-p-aminobenzoate (OC2) >60% of the (99m)Tc complex was obtained at 80 degrees C in 20 min, which was separated from the free ligand and impurities by HPLC. After solvent evaporation, (99m)Tc-OC2 was conjugated with the monoclonal antibody mAb425 in 50% radiochemical yield. In all, the labeling method required about 1 h preparation time. The immunoreactive fraction of the (99m)Tc-OC2 mAb425 conjugate was 81%, indicating preserved binding capability after conjugation. Compared to recently described methods, which need in situ activation of the (99m)Tc complex, the application of OC2 saved time and reduced the number of manipulations with radioactive material.  相似文献   

6.
In our previous studies, interleukin-8 (IL-8) was labeled with (99m)Tc using hydrazinonicotinamide (HYNIC) as bifunctional coupling agent and tricine as coligand. This preparation showed excellent characteristics for imaging of infection in a rabbit model of soft-tissue infection. In the present study, the propylaldehyde hydrazone formulation of HYNIC was introduced to stabilize HYNIC-IL-8. (99m)Tc-HYNIC-IL-8 was prepared using 5 different coligand formulations. The effect of these coligand formulations on the in vitro characteristics and in vivo behavior of (99m)Tc-HYNIC-IL-8 was investigated. HYNIC-conjugated IL-8 was labeled with (99m)Tc in the presence of either (A) tricine, (B) ethylenediaminediacetic acid (EDDA), (C) tricine and trisodium triphenylphosphinetrisulfonate (TPPTS), (D) tricine and nicotinic acid (NIC), or (E) tricine and isonicotinic acid (ISONIC). These preparations were characterized in vitro by RP-HPLC, determination of the octanol/water partition coefficient, stability studies, and receptor binding assays. The in vivo biodistribution of the radiolabel in rabbits with E. coli-induced soft-tissue infection was determined both by gamma-camera imaging as well as by tissue counting at 6 h pi. Specific activity (MBq/microg) was highest for (ISO)NIC (up to 80) > TPPTS (40) > tricine (15) > EDDA (7). RP-HPLC and octanol/water partition coefficients showed a shift toward higher lipophilicity for the TPPTS preparation. The leukocyte receptor binding fractions were around 40-55% for all preparations except for TPPTS, which showed predominantly nonspecific binding. All preparations were stabilized in serum, but the stability in PBS was highest for NIC and TPPTS > EDDA > ISONIC > tricine. The in vivo biodistribution showed highest abscess/muscle for NIC and ISONIC (>200) > EDDA and tricine (approximately 100) > TPPTS (<40). Gamma camera imaging rapidly visualized the abscess from 2 h pi onward for all formulations. The abscess/background (A/B) at 6 h pi for ISONIC was significantly higher (P < 0.05) than that of tricine and the A/B of TPPTS was significantly lower (P < 0.05). IL-8 can be rapidly and easily labeled with (99m)Tc using HYNIC as a chelator in combination with various coligands. The most optimal infection imaging characteristics were found for formulations using nicotinic acid/tricine as coligand system combining a high specific activity and high in vitro stability with high abscess/muscle ratios (>200) and high abscess/background ratios (>20). Protein doses to be administered were as low as 70 ng/kg bodyweight. At these low protein doses, side effects are not to be expected in the human system. This paves the way for infection imaging studies in patients.  相似文献   

7.
Previously, we showed that labeled bitistatin analogues possessed excellent characteristics for imaging both deep-vein thrombosis and pulmonary embolism. We hypothesized that the N-terminal amino acid sequence of bitistatin, which is different from other disintegrins, likely interacts with the binding site of platelets to confer desirable properties to bitistatin for imaging. In this study, we present the design, synthesis, and initial biological testing of a short-chain analogue of the native 83-amino-acid bitistatin sequence. Our initial molecular modeling of the binding loop of bitistatin showed that the minimal sequence that represented the binding region was a cyclic 10 amino acid sequence cyclo[Cys-Arg-Ile-Ala-Arg-Gly-Asp-Trp-Asn-Cys(S)]. Systematic modeling of a truncated N-terminal sequence of bitistatin fused with the optimized binding region having a thioether sequence through a Gaba spacer ultimately yielded the 24-amino acid peptide, cyclo-[CH(2)CO-Arg-Ile-Ala-Arg-Gly-Asp-Trp-Asn-Cys(S-)]-Gaba-Gly-Asn-Glu-Ile-Leu-Glu-Gln-Gly-Glu-Asp-Ser-Asp-Ser-Lys-OH, 1. The peptide was then coupled to the hydrazino-nicotinic acid bifunctional chelating agent and the purified adduct labeled with (99m)Tc using tricine as a coligand. Binding of the unlabeled and labeled peptide to stimulated human platelets was assayed in vitro. The (99m)Tc labeling yield was > 90%. The in vitro binding assays showed that the IC(50) for inhibition of platelet aggregation was 3694 nM, while the Kd of the (99m)Tc labeled peptide was 185 nM, indicating moderate affinity for the receptor. The (99m)Tc-labeled peptide was able to identify sites of experimental thrombi and emboli in a canine model. The results suggest initial success in attempting to mimic the behavior of bitistatin for imaging thrombi and emboli.  相似文献   

8.
The aim of this study was to radiolabel ciprofloxacin (Cip) and nitrofuryl thiosemicarbazone (NFT) with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) core and to evaluate the ability of the radiopharmaceuticals as tracers in detecting sites of infection. Cip and NFT were radiolabeled with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) core and characterized by RHPLC. The stabilities of the preparations were evaluated in saline and rat serum. In vitro binding studies of the radiopharmaceuticals with S. aureus were performed. Biodistribution studies were conducted at different time points after injecting (i.v.) the radiopharmaceuticals in rats (intramuscularly infected with S. aureus) as well as in rats with sterile inflammation. To assess the infection targeting capacity of (99m)Tc-tricarbonyl ciprofloxacin and nitrofuryl thiosemicarbazone, (99m)Tc(v)O-Cip and (99m)Tc(v)O-NFT were used as control. Scintigraphic imaging studies of tricarbonyl compounds and (99m)Tc(v)O-Cip were performed at 4 h after injection. The radiochemical purities of (99m)Tc(CO)(3)-Cip and (99m)Tc(CO)(3)-NFT were between 97-98% as determined by thin layer chromatography (TLRC) and RHPLC; no further purification is necessary before injection. The radiopharmaceuticals exhibited substantial stability when incubated in isotonic saline and serum up to 24 h. Biodistribution studies showed maximum uptake in the infected rat thigh muscle at 4 h post injection and washing out at slower rate from the infected site than the oxo technetium chelate. The mean ratios of uptake in infected/non-infected thighs were 3.87:1, 3.41:1 and 3.17:1 for (99m)Tc(CO)(3)-Cip, (99m)Tc(CO)(3)-NFT and (99m)Tc(v)O-Cip respectively. During scintigraphic studies, infection sites appeared quite distinctly with (99m)Tc(CO)(3)-Cip and (99m)Tc(CO)(3)-NFT, comparable to the behaviour with (99m)Tc(v)O-Cip. These results encouraged us for further development of infection imaging radiopharmaceuticals based on the (99m)Tc-tricarbonyl core.  相似文献   

9.
A phosphonate derivative 10'-bis(acetamido)-ethane-bis[1,4,7-tri(methylene phosphonic acid)-1,4,7,10-tetraazacyclododecane] (DO3P-AME-DO3P), was synthesized with 90% yield in high purity. It was labeled with (99m)Tc in 97.5% efficiency and specific activity of 112-250 MBq/μmol. The binding affinity of (99m)Tc-DO3P-AME-DO3P towards bone minerals was tested in vitro by using hydroxy apatite as a bone model with absorption of 93% during the first hour of the experiment. Receptor binding assay on human bone cell line SAOS-2 demonstrated K(d) value of 1.07 nM. Cell binding studies of DO3P-AME-DO3P on osteoblasts and osteoclasts cells performed in vitro displayed preferential affinity of the compound towards osteoclast (167.95 ± 3.56% dose/mg protein). The serum stability of (99m)Tc complex was found to be 96.8% after 24 h. Blood kinetics of (99m)Tc-DO3P-AME-DO3P performed on normal rabbits showed fast clearance with t(1/2)(F) = 15 min ± 0.014 min and t(1/2)(S) = 4 h 3 min ± 0.09 min. Biodistribution studies carried out in normal BALB/c mice showed bone-to-blood ratio of 20 and bone-to-muscle ratio of 33. The bone tissue demonstrated highest concentration of bound radioactivity with 10.73% ID/g at 1 h post injection. The protonation and stability constants were determined by pH-potentiometry titrations. The stability constants of DO3P-AME-DO3P with Lu(III), Sm(III), and Ho(III) were 19.7, 21.8, and 20.2 determined by "out of cell" method. The excellent bone seeking properties of DO3P-AME-DO3P make it a candidate of choice for SPECT imaging and preferential uptake of the compound in osteoclasts in comparison to osteoblasts; BMM and BMC can be used to understand the pathway of pathogenesis of osteoporosis and skeletal metastases.  相似文献   

10.
Baker CH  Tomlinson SR  García AE  Harman JG 《Biochemistry》2001,40(41):12329-12338
We investigated the characteristics of CRP having amino acid substitutions at position 99. Analysis of amino acid residue proximity to cAMP in molecular dynamics (MD) simulations of the CRP:(cAMP)(2) complex [García, A. E., and Harman, J. G. (1996) Protein Sci. 5, 62-71] showed repositioning of tyrosine 99 (Y99) to interact with the equatorial exocyclic oxygen atom of cAMP. To test the role of Y99 in cAMP-mediated CRP activation, Y99 was substituted with alanine (A) or phenylalanine (F). Cells that contained the WT or mutant forms of CRP induced beta-galactosidase in the presence of cAMP. Purified WT, Y99A, and Y99F CRP showed only a 3- to 4-fold difference in cAMP affinity. There were no apparent differences between the three forms of CRP in cAMP binding cooperativity, in CRP:(cAMP)(1) complex binding to lacP DNA, in the formation of CRP:cAMP:RNAP complexes at lacP, or in CRP efficacy in mediating lacP activity in vitro. The apo-form of Y99A CRP was more sensitive to protease than the apo-form of either WT CRP or Y99F CRP. Whereas the WT or Y99F CRP:(cAMP)(1) complexes were cleaved by protease at hinge-region peptide bonds, the Y99A CRP:(cAMP)(1) complex was cleaved at peptide bonds located at the subunit interface. The rates of subunit exchange for Y99A CRP, both in the apo-form and in a 1:1 complex with cAMP, were significantly greater than that measured for WT CRP. The results of this study show that tyrosine 99 contributes significant structural stability to the CRP dimer, specifically in stabilizing subunit association.  相似文献   

11.
Functionalization of biologically relevant molecules for the labeling with the novel fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) precursor has gained considerable attention recently. Therefore, we tested seven different tridentate (histidine L(1)(), iminodiacetic acid L(2)(), N-2-picolylamineacetic acid L(3)(), N, N-2-picolylaminediacetic acid L(4)()) and bidentate (histamine L(5)(), 2-picolinic acid L(6)(), 2,4-dipicolinic acid L(7)()) ligand systems, with the potential to be bifunctionalized and attached to a biomolecule. The ligands allowed mild radiolabeling conditions with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) (30 min, 75 degrees C). The ligand concentrations necessary to obtain yields of >95% of the corresponding organometallic complexes 1-7 ranged from 10(-)(6) to 10(-)(4) M. Complexes of the general formula "fac-[(99m)TcL(CO)(3)]" (L = tridentate ligand) and "fac-[(99m)Tc(OH(2))L'(CO)(3)]" (L' = bidentate ligand), respectively, were produced. Challenge studies with cysteine and histidine revealed significant displacement of the ligands in complexes 5-7 but only little exchange with complexes 1-4 after 24 h at 37 degrees C in PBS buffer. However, no decomposition to (99m)TcO(4)(-) was observed under these conditions. All complexes showed a hydrophilic character (log P(o/w) values ranging from -2.12 to 0.32). Time-dependent FPLC analyses of compounds 1-7 incubated in human plasma at 37 degrees C showed again no decomposition to (99m)TcO(4)(-) after 24 h at 37 degrees C. However, the complexes with bidentate ligands (5-7) became almost completely protein bound after 60 min, whereas the complexes with tridentate coordinated ligands (1-4) showed no reaction with serum proteins. The compounds were tested for their in vivo stability and the biodistribution characteristics in BALB/c mice. The complexes with tridentate coordinated ligand systems (1-4) revealed generally a good and fast clearance from all organs and tissues. On the other hand, the complexes with only bidentate coordinated ligands (5-7) showed a significantly higher retention of activity in the liver, the kidneys, and the blood pool. Detailed radiometric analyses of murine plasma samples, 30 min p.i. of complex fac-[(99m)TcL(1)(CO)(3)], 1, revealed almost no reaction of the radioactive complex with the plasma proteins. By contrast, in plasma samples of mice, which were injected with complex fac-[(99m)Tc(OH(2))L(5)(CO)(3)](+), 5, the entire radioactivity coeluded with the proteins. On the basis of these in vitro and in vivo experiments, it appears that functionalization of biomolecules with tridentate-chelating ligand systems is preferable for the labeling with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+), since this will presumably result in radioactive bioconjugates with better pharmacokinetic profiles.  相似文献   

12.
The goal of this investigation was to examine the possibilities for yttrium-90-labeling of the 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), which is currently labeled with technetium-99m and as a (99m)Tc-DPD clinically used as bone imaging agent. Analysis of the complex enclosed the radiochemical quality control methods, biodistribution studies, as well as the determination of pharmacokinetic parameters. The biological behavior of complexes (90)Y-DPD, (99m)Tc-DPD and (90)Y-labeled DPD-kit formulation [(90)Y-(Sn)-DPD] in animal model was compared. The labeling conditions were standardized to give the maximum yield, which ranged between 93% and 98%. The examined (90)Y complex could be easily prepared, with an outstanding yield and was also found to be very stable for at least 10h after (90)Y-labeling. Protein binding value was 4.6+/-0.7% for (90)Y-DPD complex and the complex possess a hydrophilic character. The satisfactory results of (90)Y-DPD biodistribution in healthy test animals were obtained; the uptake in the bone was 11-13%ID/g after 24h depending on the pH value during the preparation. With high skeletal uptake, a minimum uptake in soft tissues and rapid blood clearance the (90)Y-DPD complex proved to be an excellent candidate for targeting tumor therapy.  相似文献   

13.
We present a human infection with the canine whipworm, Trichuris vulpis, in a child suffering from rhinitis with a diagnosis of rhinitis. T. vulpis eggs resemble those of T. trichiura but they can be differentiated based on their morphological features and egg size, using micrometry with an ocular micrometer. T. vulpis eggs measured an average of 90 μm by 44 μm (range 86-99 μm by 38-47 μm). Prevalence of hookworms (28.1%), Toxocara canis (11.8%), and Trichuris vulpis (3.5%) was found in 292 fecal samples of dogs collected at the peri-domicile, which showed that the risk of infection was not only fortuitous. The treatment of canine whipworm infections is similar to that of T. trichiura infection. We recommend differentiation of the 2 species for their epidemiological and prevention implications.  相似文献   

14.
The aim of this study was to localize (99m)Tc and (188)Re radionuclides to tumors, using a bispecific antibody (bsMAb) in a two-step approach where the radionuclides are attached to novel peptides incorporating moieties recognized by one arm of the bsMAb. A chemically cross-linked human/murine bsMAb, hMN-14 x 734 (Fab' x Fab'), anti-carcinoembryonic antigen [CEA] x anti-indium-DTPA was prepared as a prelude to constructing a fully humanized bsMAb for future clinical application. N,N'-o-Phenylenedimaleimide was used to cross-link the Fab' fragments of the two antibodies at their hinge regions. This construct was shown to be >92% pure and fully reactive with CEA and a divalent (indium)DTPA-peptide. For pretargeting purposes, a peptide, IMP-192 [Ac-Lys(In-DTPA)-Tyr-Lys(In-DTPA)-Lys(TscG-Cys-)-NH(2) ?TscG = 3-thiosemicarbazonylglyoxyl?], with two indium-DTPAs and a chelate for selectively binding (99m)Tc or (188)Re, was synthesized. IMP-192 was formulated in a "single dose" kit and later radiolabeled with (99m)Tc (94-99%) at up to 1836 Ci/mmol and with (188)Re (97%) at 459-945 Ci/mmol of peptide. [(99m)Tc]IMP-192 was shown to be stable by extensive in vitro and in vivo testing and had no specific uptake in the tumor with minimal renal uptake. The biodistribution of the hMN-14 x murine 734 bsMAb was compared alone and in a pretargeting setting to a fully murine anti-CEA (F6) x 734 bsMAb that was reported previously [Gautherot, E., Bouhou, J., LeDoussal, J.-M., Manetti, C., Martin, M., Rouvier, E., and Barbet, J. (1997) Therapy for colon carcinoma xenografts with bispecific antibody-targeted, iodine-131-labeled bivalent hapten. Cancer 80 (Suppl.), 2618-2623]. Both bsMAbs maintained their integrity and dual binding specificity in vivo, but the hMN-14 x m734 was cleared more rapidly from the blood. This coincided with an increased uptake of the hMN-14 x m734 bsMAb in the liver and spleen, suggesting an active reticuloendothelial cell recognition mechanism of this mixed species construct in naive mice. Animals bearing GW-39 human colonic cancer xenografts were injected with bsMAb (15 microg) and after allowing 24 or 72 h for the bsMAb constructs to clear from the blood (hMN-14 and murine F6 x 734, respectively), [(188)Re]IMP-192 (7 microCi) or [(99m)Tc]IMP-192 (10 microCi) was injected at a bsMAb:peptide ratio of 10:1. Tumor uptake of [(99m)Tc] or [(188)Re]IMP-192 was 12.6 +/- 5.2 and 16.9 +/- 5.5% ID/g at 3 h postinjection, respectively. Tumor/nontumor ratios were between 5.6 and 23 to 1 for every major organ, indicating that early imaging with (99m)Tc will be possible. Radiation absorbed doses showed a 4.8-, 7.2-, and a 12.6 to 1.0 tumor to blood, kidney, and liver ratios when (188)Re was used. Although this new bsMAb pretargeting approach requires further optimization, it already shows very promising targeting results for both radioimmunodetection and radioimmunotherapy of colorectal cancer.  相似文献   

15.
To exploit the B-lymphocyte antigen-CD20 binding capacity of the Ibritumomab tiuxetan (IBTN) monoclonal antibody (mAb) for imaging, the over-expression of B cells in non-Hodgkin's lymphoma (NHL) (a myeloproliferative disorder of the lymphatic system) was investigated. In the current investigation, we present the labeling of the IBTN with technetium-99m ((99m)Tc) through [(99m)Tc(CO)(3)](+) precursor for radioimmunoimaging (RII) of the tumor prior to its treatment with (90)Y labeled IBTN. Labeled IBTN was radiobiologically characterized in terms of radiochemical purity, in vitro stability in human plasma, immunoreactivity, binding with Raji and Ramos cells and biodistribution in a female nude mouse (FNM) model. It was observed that the reduced IBTN (rIBTN) showed more promising radiobiologic characteristics than the nonreduced IBTN. Significantly higher transchelation was seen in excess cysteine compared with histidine. The radioconjugate showed higher saturated binding affinity with CD20 antigen. Significantly higher target (tumor) to background ratios were observed 1 h post-injection (p.i.). Based on radiochemical purity, in vitro stability, immunoreactivity, binding and biodistrubtion in the FNM model, we recommend the radiolabeling of the rIBTN using tricarbonyl technique as a potential RII agent.  相似文献   

16.
This report describes the (99m)Tc labeling of a hydrazinonicotinamide (HYNIC)-conjugated LTB(4) receptor antagonist (SG380). The ternary ligand technetium complex [(99m)Tc(SG38)(tricine)(TPPTS)] (RP517) was prepared using a non-SnCl(2)-containing formulation ((2001) J. Pharm. Sci. 90, 114-123). Unlike other HYNIC-conjugated small biomolecules, SG380 is lipophilic and has low solubility in the kit matrix. Using a combination of a solubilizing agent (Lysolecithin) and a cosolvent (ethanol), we have developed a new formulation for routine preparation of RP517. Using this formulation, RP517 can be prepared in high radiochemical purity (RCP > 90%) and remains stable in the kit matrix for at least 6 h. We also prepared the corresponding (99)Tc analogue, [(99)Tc]RP517. An HPLC concordance experiment using RP517 and [(99)Tc]RP517 showed that the same technetium complex was prepared at both the tracer and macroscopic levels. The LC-MS data are completely consistent with the 1:1:1:1 composition for Tc:SG380:tricine:TPPTS.  相似文献   

17.
An important issue in the development of metal-based radiopharmaceuticals is the selection of the labelling strategy in order to couple the metal to the pharmacophore without losing the biological activity. With the aim to evaluate the correlation between ligand denticity and biological behaviour of the corresponding (99m)Tc complexes, we designed a tridentate and a bidentate 5-nitroimidazole derivatives suitable for (99m)Tc(I) tricarbonyl complexation and with potential use as radiopharmaceuticals towards hypoxic tissue diagnosis. Ligands were synthesized using metronidazol, a pharmaceutical containing the bioreductive pharmacophore as starting material. The chelating units were connected to the pharmacophore using the click reaction of Huisgen. Both (99m)Tc complexes were obtained in high yield and were hydrophilic and stable in labelling milieu. The complex obtained from the tridentate ligand exhibited high stability in human plasma, low protein binding and a favourable biodistribution characterized by low blood and liver uptake, fast elimination and negligible uptake in other organs or tissues. Selective uptake and retention in tumour together with favourable tumour/muscle ratio makes this (99m)Tc-complex a promising candidate for further evaluation as potential hypoxia imaging agent in tumours. The bidentate ligand, on the other hand, yielded a less stable (99m)Tc-complex that experimented hydrolysis in vitro and decomposition in human plasma and showed high protein binding, high blood and liver uptake and moderate excretion. Although selective uptake and retention in tumour was also observed physicochemical and biological behaviour are inadequate for in vivo use, demonstrating that denticity of the ligand is particularly important and that tridentate ligands are preferable in order to prepare (99m)Tc-tricarbonyl complexes for Nuclear Medicine imaging.  相似文献   

18.
Development of target-specific diagnostic radiopharmaceuticals has always been a challenging task. For this purpose, design and development of the imaging-friendly variant of a potent antibiotic could aid in treatment planning and follow-up of patients with hard-to-diagnose bacterial infections. Fluoroquinolone analogues were synthesized taking the lead from Ciprofloxacin (the broad spectrum antibiotic) molecule. The idea of modifying fluoroquinolones, and subsequently labeling them, was to preserve their capacity to bind bacteria and thereby enable the compound to specifically target those microorganisms. Three compounds were thus synthesized as derivatives of Ciprofloxacin. The fluoroquinolone analogues were labeled with (99m)Tc by using (99m)Tc pertechnetate with high labeling efficiency for all the formulations. The complexes formed by chelation of (99m)Tc with our synthesized fluoroquinolone analogues showed good in vitro serum stability. The blood clearance study performed in New Zealand White rabbits exhibited a curve indicating the initial fast phase in which radiocomplexed drugs cleared from blood very quickly followed by a slow phase. The in vivo evaluation showed that fluoroquinolone-based radiopharmaceuticals bind to the bacteria present at the site of infection, which results in the retention of the agent at sites of active bacterial infection. The biodistribution data and the scintigrams demonstrated that Staphylococcus aureus bacteria in animal infection models took up the radiopharmaceutical formulations, confirming our hypothesis that (99m)Tc fluoroquinolone derivatives might be useful as diagnostic agents for targeted delivery in bacterial infections.  相似文献   

19.
The [NS][S](2) mixed-ligand system was applied to synthesize oxorhenium and oxotechnetium complexes of the general formula MO(o-CH(3)OC(6)H(4)N(CH(2)CH(2))(2)NCH(2)CH(2)S)(p-CH(3)C(6)H(4)S)(2) (M=Re in 1, M=(99)Tc in 2, and M=(99m)Tc in 3). The bidentate [NS] ligand includes the 1-(2-methoxyphenyl)piperazine moiety which is a fragment of the true 5-HT(1A) antagonist WAY 100635. The oxorhenium complex 1 was prepared by a ligand exchange reaction using ReOCl(3)(PPh(3))(2) as precursor while [Bu(4)N][(99)TcOCl(4)] and (99)Tc-gluconate were used as precursors in the synthesis of the oxotechnetium-99 complex 2. Both complexes were characterized by elemental analysis and spectroscopic methods. Crystallographic analysis of 1 showed that the rhenium coordination geometry is trigonal bipyramidal. The basal plane of the trigonal bipyramid is defined by the oxo group and two sulphur atoms, one belonging to the [NS] ligand and the other to an aromatic thiol, while the apical positions are occupied by the nitrogen of the [NS] ligand and the sulphur of the second aromatic thiol. The oxotechnetium-99 complex 2 has almost identical unit cell parameters to those of the oxorhenium complex 1 indicating, in combination with the other analytical data, that the complexes are isostructural. The binding affinity of the oxorhenium complex 1 for the 5-HT(1A) receptor subtype was determined in rat brain hippocampal preparations (IC(50)=106 nM). The oxotechnetium-99m complex 3 was prepared by a ligand exchange reaction using (99m)Tc-glucoheptonate as the precursor. Its structure was established by comparative HPLC studies using the oxotechnetium-99 complex 2 as a reference. Complex 3 was administered by intravenous injection in rats. At 2 min post injection, 0.153% of the injected dose per gram of tissue was measured in rat brain.  相似文献   

20.
A bifunctional chelator 6 was prepared bearing an N2S2 core for binding rhenium or technetium and a carboxylic acid group for conjugation to amino groups of biomolecules. Complexation of 6 with rhenium(V) resulted in two kinetic isomers, anti-7 and syn-7, being formed in approximately equal amounts. Epimerization with 0.5 M NaOH yields a single isomer anti-7, as determined by NMR spectroscopy and single-crystal X-ray analysis. The 99mTc complex was prepared at the tracer level by reaction of the ligand with 99mTcO4-, tin(II) chloride and sodium gluconate giving a mixture of two isomers, but showing a preference for the anti isomer. Chelation in the presence of 1 M NaOH results in anti-8 being formed as the sole product. The bifunctional ability of the ligand was explored by amide formation with (S)-alpha-phenethylamine, either by direct DCC coupling or through the N-hydroxy succinimidyl ester 9 intermediate. The deprotected bioconjugate 11 was complexed with rhenium, yielding similar amounts of two isomeric rhenium complexes, anti-12 and syn-12, which were isolated and characterized by NMR spectroscopy. Treatment of the kinetic mixture of anti-12 and syn-12 with 1 M NaOH resulted in quantitative conversion to a single rhenium complex anti-12. With technetium-99m in 0.1 M sodium acetate, bioconjugate 11 yielded both technetium-99m complexes anti-13 and syn-13, in a 2:1 ratio, respectively. In contrast, complexation in the presence of 1 M NaOH gave only one technetium-99m complex, assigned the structure anti-13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号