首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Screening of transfer DNA (tDNA) tagged lines of Arabidopsis thaliana for mutants defective in systemic acquired resistance led to the characterization of dir1-1 (defective in induced resistance [systemic acquired resistance, SAR]) mutant. It has been suggested that the protein encoded by the dir1 gene, i.e., DIR1, is involved in the long distance signaling associated with SAR. DIR1 displays the cysteine signature of lipid transfer proteins, suggesting that the systemic signal could be lipid molecules. However, previous studies have shown that this signature is not sufficient to define a lipid transfer protein, i.e., a protein capable of binding lipids. In this context, the lipid binding properties and the structure of a DIR1-lipid complex were both determined by fluorescence and X-ray diffraction. DIR1 is able to bind with high affinity two monoacylated phospholipids (dissociation constant in the nanomolar range), mainly lysophosphatidyl cholines, side-by-side in a large internal tunnel. Although DIR1 shares some structural and lipid binding properties with plant LTP2, it displays some specific features that define DIR1 as a new type of plant lipid transfer protein. The signaling function associated with DIR1 may be related to a specific lipid transport that needs to be characterized and to an additional mechanism of recognition by a putative receptor, as the structure displays on the surface the characteristic PxxP structural motif reminiscent of SH3 domain signaling pathways.  相似文献   

2.
Systemic acquired resistance (SAR) is a plant defense response in which an initial localized infection affords enhanced pathogen resistance to distant, uninfected leaves. SAR requires efficient long-distance signaling between the infected leaf, where SAR signals are generated, and the distant uninfected leaves that receive them. A growing body of evidence indicates that the lipid transfer protein DIR1 (Defective in Induced Resistance) is an important mediator of long-distance SAR signaling. In a recent publication, we investigated if cell-to-cell movement through plasmodesmata is required for long-distance movement of DIR1 during SAR. We determined that overexpression of Plasmodesmata-Located Proteins (PDLP1 and 5) negatively impacted long-distance DIR1 movement and SAR competence, suggesting that movement through plasmodesmata contributes to long-distance signal movement during SAR.  相似文献   

3.
Systemic acquired resistance (SAR) is a plant defence response that provides immunity to distant uninfected leaves after an initial localised infection. The lipid transfer protein (LTP) Defective in Induced Resistance1 (DIR1) is an essential component of SAR that moves from induced to distant leaves following a SAR‐inducing local infection. To understand how DIR1 is transported to distant leaves during SAR, we analysed DIR1 movement in transgenic Arabidopsis lines with reduced cell‐to‐cell movement caused by the overexpression of Plasmodesmata‐Located Proteins PDLP1 and PDLP5. These PDLP‐overexpressing lines were defective for SAR, and DIR1 antibody signals were not observed in phloem sap‐enriched petiole exudates collected from distant leaves. Our data support the idea that cell‐to‐cell movement of DIR1 through plasmodesmata is important during long‐distance SAR signalling in Arabidopsis.  相似文献   

4.
A full-length tomato cDNA clone, TSW12, which is developmentally and environmentally regulated, has been isolated and characterized. TSW12 mRNA is accumulated during tomato seed germination and its level increases after NaCl treatment or heat shock. In mature plants, TSW12 mRNA is only detected upon treatment with NaCl, mannitol or ABA and its expression mainly occurs in stems. The nucleotide sequence of TSW12 includes an open reading frame coding for a basic protein of 114 amino acids; the first 23 amino acids exhibit the sequence characteristic of a signal peptide. The high similarity between the TSW12-deduced amino acid sequence and reported lipid transfer proteins suggests that TSW12 encodes a lipid transfer protein.  相似文献   

5.
The proper subcellular localization of defense factors is an important part of the plant immune system. A key component for systemic resistance, lipid transfer protein (LTP)-like AZI1, is needed for the systemic movement of the priming signal azelaic acid (AZA) and a pool of AZI1 exists at the site of AZA production, the plastid envelope. Moreover, after systemic defense-triggering infections, the proportion of AZI1 localized to plastids increases. However, AZI1 does not possess a classical plastid transit peptide that can explain its localization. Instead, AZI1 uses a bipartite N-terminal signature that allows for its plastid targeting. Furthermore, the kinases MPK3 and MPK6, associated with systemic immunity, promote the accumulation of AZI1 at plastids during priming induction. Our results indicate the existence of a mode of plastid targeting possibly related to defense responses.  相似文献   

6.
Systemic acquired resistance (SAR) is an inducible defense mechanism that is activated throughout the plant, subsequent to localized inoculation with a pathogen. The establishment of SAR requires translocation of an unknown signal from the pathogen-inoculated leaf to the distal organs, where salicylic acid-dependent defenses are activated. We demonstrate here that petiole exudates (PeXs) collected from Arabidopsis leaves inoculated with an avirulent (Avr) Pseudomonas syringae strain promote resistance when applied to Arabidopsis, tomato ( Lycopersicum esculentum ) and wheat ( Triticum aestivum ). Arabidopsis FATTY ACID DESATURASE7 ( FAD7 ), SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 ( SFD1 ) and SFD2 genes are required for accumulation of the SAR-inducing activity. In contrast to Avr PeX from wild-type plants, Avr PeXs from fad7 , sfd1 and sfd2 mutants were unable to activate SAR when applied to wild-type plants. However, the SAR-inducing activity was reconstituted by mixing Avr PeXs collected from fad7 and sfd1 with Avr PeX from the SAR-deficient dir1 mutant. Since FAD7 , SFD1 and SFD2 are involved in plastid glycerolipid biosynthesis and SAR is also compromised in the Arabidopsis monogalactosyldiacylglycerol synthase1 mutant we suggest that a plastid glycerolipid-dependent factor is required in Avr PeX along with the DIR1- encoded lipid transfer protein for long-distance signaling in SAR. FAD7 -synthesized lipids provide fatty acids for synthesis of jasmonic acid (JA). However, co-infiltration of JA and methylJA with Avr PeX from fad7 and sfd1 did not reconstitute the SAR-inducing activity. In addition, JA did not co-purify with the SAR-inducing activity confirming that JA is not the mobile signal in SAR.  相似文献   

7.
Based on the N-terminal sequence of a sunflower antifungal protein, a full length cDNA (Ha-LTP5) encoding a putative lipid transfer protein from sunflower seeds was cloned using a RT-PCR based strategy. However, the sequence of the deduced protein is not identical to that of the antifungal protein previously isolated. The nucleotide sequence presents an ORF of 116 amino acids with a putative signal peptide, thus encoding a mature protein of 90 amino acids that is basic and hydrophobic. In contrast to the pattern of expression described for most LTP-like genes from dicots, Northern blot analyses detected constitutive expression of Ha-LTP5 in seeds, but not in aerial parts of sunflower plants.  相似文献   

8.
Abietane diterpenoids are major constituents of conifer resins that have important industrial and medicinal applications. However, their function in plants is poorly understood. Here we show that dehydroabietinal (DA), an abietane diterpenoid, is an activator of systemic acquired resistance (SAR), which is an inducible defense mechanism that is activated in the distal, non-colonized, organs of a plant that has experienced a local foliar infection. DA was purified as a SAR-activating factor from vascular sap of Arabidopsis thaliana leaves treated with a SAR-inducing microbe. Locally applied DA is translocated through the plant and systemically induces the accumulation of salicylic acid (SA), an important activator of defense, thus leading to enhanced resistance against subsequent infections. The NPR1 (NON-EXPRESSOR OF PR GENES1), FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE1) and DIR1 (DEFECTIVE IN INDUCED RESISTANCE1) genes, which are critical for biologically induced SAR, are also required for the DA-induced SAR, which is further enhanced by azelaic acid, a defense priming molecule. In response to the biological induction of SAR, DA in vascular sap is redistributed into a SAR-inducing 'signaling DA' pool that is associated with a trypsin-sensitive high molecular weight fraction, a finding that suggests that DA-orchestrated SAR involves a vascular sap protein(s).  相似文献   

9.
The tomato (Solanum lycopersicum) Mi-1 gene encodes a protein with putative coiled-coil nucleotide-binding site and leucine-rich repeat motifs. Mi-1 confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum euphorbiae), and sweet potato whitefly (Bemisia tabaci). To identify genes required in the Mi-1-mediated resistance to nematodes and aphids, we used tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) to repress candidate genes and assay for nematode and aphid resistance. We targeted Sgt1 (suppressor of G-two allele of Skp1), Rar1 (required for Mla12 resistance), and Hsp90 (heat shock protein 90), which are known to participate early in resistance gene signaling pathways. Two Arabidopsis (Arabidopsis thaliana) Sgt1 genes exist and one has been implicated in disease resistance. Thus far the sequence of only one Sgt1 ortholog is known in tomato. To design gene-specific VIGS constructs, we cloned a second tomato Sgt1 gene, Sgt1-2. The gene-specific VIGS construct TRV-SlSgt1-1 resulted in lethality, while silencing Sgt1-2 using TRV-SlSgt1-2 did not result in lethal phenotype. Aphid and root-knot nematode assays of Sgt1-2-silenced plants indicated no role for Sgt1-2 in Mi-1-mediated resistance. A Nicotiana benthamiana Sgt1 VIGS construct silencing both Sgt1-1 and Sgt1-2 yielded live plants and identified a role for Sgt1 in Mi-1-mediated aphid resistance. Silencing of Rar1 did not affect Mi-1-mediated nematode and aphid resistance and demonstrated that Rar1 is not required for Mi-1 resistance. Silencing Hsp90-1 resulted in attenuation of Mi-1-mediated aphid and nematode resistance and indicated a role for Hsp90-1. The requirement for Sgt1 and Hsp90-1 in Mi-1-mediated resistance provides further evidence for common components in early resistance gene defense signaling against diverse pathogens and pests.  相似文献   

10.
Ace-AMP1 is a potent antifungal peptide found in onion (Allium cepa) seeds with sequence similarity to plant lipid transfer proteins. Transgenic plants over-expressing Ace-AMP1 gene have enhanced disease resistance to some fungal pathogens. However, mass production in heterologous systems and in vitro application of this peptide have not been reported. In this study, Ace-AMP1 was highly expressed in a prokaryotic Escherichia coli system as a fusion protein. The purified protein inhibited the growth of many plant fungal pathogens, especially Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, and Verticillium dahliae. The inhibitory effect was accompanied by hyphal hyperbranching for V. dahliae but not for F. oxysporum f. sp. vasinfectum and A. solani, suggesting that the mode of action of Ace-AMP1 on different fungi might be different. Application of Ace-AMP1 on tomato leaves showed that the recombinant protein conferred strong resistance to the tomato pathogen A. solani and could be used as an effective fungicide.  相似文献   

11.
桂蓓  王瑛 《植物生理学通讯》2007,43(6):1050-1056
根据番茄中控制果实形状的主效数量性状基因ovate的序列,用生物信息学方法从茄科植物烟草中获得直系同源ovate基因(NTovate)的特异片段,经鉴定,此基因在烟草中至少有2个拷贝。在此基础上用cDNA末端快速扩增(RACE)方法,获得其中1个拷贝的1059bpNTovate全长cDNA序列。序列分析表明,NTovate cDNA序列编码352个氨基酸,其蛋白序列与番茄ovate蛋白序列和拟南芥ovate蛋白家族AtOFP7蛋白分别为70%和36%的序列一致率,而与此家族中其他蛋白以及水稻ovate蛋白仅在保守的ovate结构域有较低的同源性。此基因已在GenBank中登录(EU043369)。  相似文献   

12.
The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.  相似文献   

13.
A class of small polypeptides, isolated from seeds of barley and millet, which had been previously identified as putative amylase inhibitors has been found to have striking amino acid sequence identity with phospholipid transfer proteins. In addition, both classes of proteins have the same molecular weight and appear to be produced by proteolytic cleavage of an amino-terminal peptide of similar size. These properties, and the lack of any known activity for the barley protein, suggest that the putative amylase inhibitors are lipid transfer proteins.  相似文献   

14.
We report on the molecular cloning of the Phytophthora megasperma H20 (PmH20) glycoprotein shown previously as an inducer of the hypersensitive response, of localized acquired resistance and of systemic acquired resistance in tobacco (Nicotiana tabacum), and of the PmH20 alpha- and beta-megaspermin, two elicitins of class I-A and I-B, respectively. The structure of the glycoprotein shows a signal peptide of 20 amino acids followed by the typical elicitin 98-amino acid-long domain and a 77-amino acid-long C-terminal domain carrying an O-glycosylated moiety. The molecular mass deduced from the translated cDNA sequence is 14,920 and 18,676 D as determined by mass spectrometry. This structure together with multiple sequence alignments and phylogenetic analyses indicate that the glycoprotein belongs to class III elicitins. It is the first class III elicitin protein characterized, which we named gamma-megaspermin. We compared the biological activity of the three PmH20 elicitins when applied to tobacco cv Samsun NN plants. Although alpha- and gamma-megaspermin were similarly active, beta-megaspermin was the most active in inducing the hypersensitive response and localized acquired resistance, which was assessed by measuring the levels of acidic and basic pathogenesis-related proteins and of the antioxidant phytoalexin scopoletin. The three elicitins induced similar levels of systemic acquired resistance measured as the expression of acidic PR proteins and is increased resistance to challenge tobacco mosaic virus infection.  相似文献   

15.
The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jail-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jail-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jail-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants.  相似文献   

16.
Ooi LS  Tian L  Su M  Ho WS  Sun SS  Chung HY  Wong HN  Ooi VE 《Peptides》2008,29(12):2101-2109
A fetuin-binding peptide with a molecular mass of about 9kDa (designated NTP) was isolated and purified from the bulbs of Chinese daffodil, Narcissus tazetta var. chinensis L., by gel filtration and high-performance liquid chromatography, after removing the mannose-binding proteins by mannose-agarose column. Molecular cloning revealed that NTP contained an open reading frame of 354bp encoding a polypeptide of 118 amino acids which included a 26-amino-acid signal peptide. An analysis of the deduced amino acid sequence of NTP shows considerable sequence homology to the non-specific lipid transfer proteins (nsLTPs) of certain plants. Model of the three-dimensional (3D) structure of NTP exhibits an internal hydrophobic cavity which can bind lipid-like molecules and transfer a wide range of ligands. As a member of the putative non-specific lipid transfer protein of N. tazetta, NTP did not possess hemagglutinating activity toward rabbit erythrocytes. In a cell-free system, it could arrest the protein synthesis of rabbit reticulocytes. Using the in vitro antiviral assays, NTP could significantly inhibit the plaque formation by respiratory syncytial virus (RSV) and the cytopathic effect induced by influenza A (H1N1) virus, as well as the proliferation of human acute promyelocytic leukemia cells (HL-60).  相似文献   

17.
Kim HS  Delaney TP 《The Plant cell》2002,14(7):1469-1482
One of several induced defense responses in plants is systemic acquired resistance (SAR), which is regulated by salicylic acid and in Arabidopsis by the NIM1/NPR1 protein. To identify additional components of the SAR pathway or other genes that regulate SAR-independent resistance, we performed genetic suppressor screens of mutagenized nim1-1 seedlings, which are highly susceptible to infection by Peronospora parasitica. We isolated the son1 (suppressor of nim1-1) mutant, which shows full restoration of pathogen resistance without the induction of SAR-associated genes and expresses resistance when combined with a salicylate hydroxylase (nahG) transgene. These features indicate that son1-mediated resistance is distinct from SAR. Resistance is effective against both the virulent oomycete Peronospora and the bacterial pathogen Pseudomonas syringae pv tomato strain DC3000. We cloned SON1 and found it to encode a novel protein containing an F-box motif, an element found within the specificity determinant in the E3 ubiquitin-ligase complex. We propose the existence of a novel defense response that is independent of SAR and negatively regulated in Arabidopsis by SON1 through the ubiquitin-proteosome pathway.  相似文献   

18.
The functional expression of cloned Drosophila melanogaster and house fly (Musca domestica) voltage-sensitive sodium channels in Xenopus oocytes is enhanced, and the inactivation kinetics of the expressed channels are accelerated, by coexpression with the tipE protein, a putative sodium channel auxiliary subunit encoded by the tipE gene of D. melanogaster. These results predict the existence of a tipE ortholog in the house fly. Using a PCR-based homology probing approach, we isolated cDNA clones encoding an ortholog of tipE (designated Vssc beta) from adult house fly heads. Clones comprising 3444 bp of cDNA sequence contained a 1317 bp open-reading frame encoding a 438 amino acid protein. The predicted Vssc beta protein exhibited 72% amino acid sequence identity to the entire D. melanogaster tipE protein sequence and 97% identity within the two hydrophobic segments identified as probable transmembrane domains. Coexpression of Vssc beta with the house fly sodium channel alpha subunit (Vssc1) in oocytes enhanced the level of sodium current expression five-fold and accelerated the rate of sodium current inactivation 2.2-fold. Both of these effects were significantly larger in magnitude than the corresponding effects of the D. melanogaster tipE protein on the expression and kinetics of Vssc1 sodium channels. These results identify a second example of a putative sodium channel auxiliary subunit from an insect having functional but not structural homology to vertebrate sodium channel beta subunits.  相似文献   

19.
根据从柽柳cDNA文库克隆获得的脂质转运蛋白(LTP)的部分序列,用RACE技术克隆出其全长cDNA序列.基因的5'非翻译区96bp,3'非翻译区222bp,开放阅读框285bp,编码94个氨基酸,预计蛋白的分子量为9.9 kD,等电点为8.02.此基因有8个位置保守的Cys残基及26个氨基酸的信号肽,为典型的植物脂质转运蛋白基因.其基因序列数据库(GenBank)登录号为AY574218(基因)和AAS79106(蛋白).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号