首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) are important antigen-presenting cells that control Th1- and Th2-type immunological reactions by releasing cytokines and interacting directly with T cells. Leukotriene B4 (LTB4), a classical proinflammatory lipid mediator for phagocytes, was recently identified as an important attractant for effector CD4+ and CD8+ T cells. However, little information is available on the roles of LTB4 and its receptor BLT1 in DCs. Here we show that functional BLT1 expressed in mouse bone marrow-derived DCs (BMDCs) plays important role in initiating Th1-type immune response. Detailed analyses using BMDCs revealed that BLT1-deficient DCs produced less IL-12p70 than WT DCs, leading to attenuated IFN-γ production in an allogeneic mixed lymphocyte reaction. Adoptive transfer of antigen-loaded BLT1-deficient DCs into naïve WT mice induced a weakened Th1- and enhanced Th2-response in vivo compared to WT DCs. BLT1-deficient mice consistently showed much attenuated delayed-type hypersensitivity (DTH), in which Th1-type cellular responses play a key role, and popliteal lymph node cells of BLT1-deficient mice showed reduced production of Th1 cytokines after DTH induction compared to cells from WT mice. Thus, in addition to its role in inflammation, the LTB4–BLT1 axis is important in initiating Th1-type immunological reactions mediated by DCs.  相似文献   

2.
Asthma is a chronic airway inflammatory disease that encompasses three cardinal processes: T helper (Th) cell type 2 (Th2)-polarized inflammation, bronchial hyperreactivity, and airway wall remodeling. However, the link between the immune-inflammatory phenotype and the structural-functional phenotype remains to be fully defined. The objective of these studies was to evaluate the relationship between the immunologic nature of chronic airway inflammation and the development of abnormal airway structure and function in a mouse model of chronic asthma. Using IL-4-competent and IL-4-deficient mice, we created divergent immune-inflammatory responses to chronic aeroallergen challenge. Immune-inflammatory, structural, and physiological parameters of chronic allergic airway disease were evaluated in both strains of mice. Although both strains developed airway inflammation, the profiles of the immune-inflammatory responses were markedly different: IL-4-competent mice elicited a Th2-polarized response and IL-4-deficient mice developed a Th1-polarized response. Importantly, this chronic Th1-polarized immune response was not associated with airway remodeling or bronchial hyperresponsiveness. Transient reconstitution of IL-4 in IL-4-deficient mice via an airway gene transfer approach led to partial Th2 repolarization and increased bronchial hyperresponsiveness, along with full reconstitution of airway remodeling. These data show that distinct structural-functional phenotypes associated with chronic airway inflammation are strictly dependent on the nature of the immune-inflammatory response.  相似文献   

3.
4.
Allergic airway inflammation is generally considered a Th2-type immune response. Recent studies, however, demonstrated that Th17-type immune responses also play important roles in this process, especially in the pathogenesis of neutrophilic airway inflammation, a hallmark of severe asthma. We previously reported that dendritic cells release dopamine to naive CD4(+) T cells in Ag-specific cell-cell interaction, in turn inducing Th17 differentiation through dopamine D1-like receptor (D1-like-R). D1-like-R antagonist attenuates Th17-mediated diseases such as experimental autoimmune encephalomyelitis and autoimmune diabetes. However, the effect of antagonizing D1-like-R on Th17-mediated airway inflammation has yet to be studied. In this study, we examined whether D1-like-R antagonist suppresses OVA-induced neutrophilic airway inflammation in OVA TCR-transgenic DO11.10 mice and then elucidated the mechanism of action. DO11.10 mice were nebulized with OVA or PBS, and some mice received D1-like-R antagonist orally before OVA nebulization. D1-like-R antagonist significantly suppressed OVA-induced neutrophilic airway inflammation in DO11.10 mice. It also inhibited the production of IL-17 and infiltration of Th17 cells in the lung. Further, D1-like-R antagonist suppressed the production of IL-23 by lung CD11c(+) APCs. In contrast, D1-like-R antagonist did not increase Foxp3(+) regulatory T cells in the lung. D1-like-R antagonist neither suppressed nonspecific LPS-induced neutrophilic airway inflammation nor OVA-induced eosinophilic airway inflammation. These results indicate that D1-like-R antagonist could suppress Th17-mediated neutrophilic airway inflammation, raising the possibility that antagonizing D1-like-R serves as a promising new strategy for treating neutrophil-dominant severe asthma.  相似文献   

5.
The active metabolite of vitamin D (1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))) is known to modulate the immune response in Th1 cell-directed diseases. To investigate the role of vitamin D in Th2 cell-directed diseases, experimental allergic asthma was induced in vitamin D receptor (VDR) knockout and in wild-type (WT) mice. As expected, WT mice developed symptoms of airway inflammation with an influx of eosinophils, elevated Th2 cytokine levels, mucous production, and airway hyperresponsiveness. The administration of 1,25(OH)(2)D(3) had no effect on asthma severity. The only discernable effect of 1,25(OH)(2)D(3) on experimental allergic asthma in WT mice was an increased expression of two Th2-related genes (soluble CD23 and GATA-3) in lungs of BALB/c mice exposed to Ag through the nasal route only. By contrast, asthma-induced VDR knockout mice failed to develop airway inflammation, eosinophilia, or airway hyperresponsiveness, despite high IgE concentrations and elevated Th2 cytokines. The data suggest that although 1,25(OH)(2)D(3) induced these Th2-type genes, the treatment failed to have any affect on experimental asthma severity. However, VDR-deficient mice failed to develop experimental allergic asthma, suggesting an important role for the vitamin D endocrine system in the generation of Th2-driven inflammation in the lung.  相似文献   

6.
Allergic inflammation in the airway is generally considered a Th2-type immune response. However, Th17-type immune responses also play important roles in this process, especially in the pathogenesis of severe asthma. IL-22 is a Th17-type cytokine and thus might play roles in the development of allergic airway inflammation. There is increasing evidence that IL-22 can act as a proinflammatory or anti-inflammatory cytokine depending on the inflammatory context. However, its role in Ag-induced immune responses is not well understood. This study examined whether IL-22 could suppress allergic airway inflammation and its mechanism of action. BALB/c mice were sensitized and challenged with OVA-Ag to induce airway inflammation. An IL-22-producing plasmid vector was delivered before the systemic sensitization or immediately before the airway challenge. Delivery of the IL-22 gene before sensitization, but not immediately before challenge, suppressed eosinophilic airway inflammation. IL-22 gene delivery suppressed Ag-induced proliferation and overall cytokine production in CD4(+) T cells, indicating that it could suppress Ag-induced T cell priming. Antagonism of IL-22 by IL-22-binding protein abolished IL-22-induced immune suppression, suggesting that IL-22 protein itself played an essential role. IL-22 gene delivery neither increased regulatory T cells nor suppressed dendritic cell functions. The suppression by IL-22 was abolished by deletion of the IL-10 gene or neutralization of the IL-10 protein. Finally, IL-22 gene delivery increased IL-10 production in draining lymph nodes. These findings suggested that IL-22 could have an immunosuppressive effect during the early stage of an immune response. Furthermore, IL-10 plays an important role in the immune suppression by IL-22.  相似文献   

7.
The central role for Th2 cells in the development of Ag-induced airway hyperresponsiveness and eosinophilic inflammation is well documented. We have reported a crucial role for TCR-induced activation of the Ras/extracellular signal-regulated kinase mitogen-activated protein kinase cascade in Th2 cell differentiation. Here, we show that the development of both OVA-induced airway hyperresponsiveness and eosinophilic airway inflammation in a mouse asthma model are attenuated in transgenic mice by the overexpression of enzymatically inactive Ras molecules in T cells. In addition, reduced levels of IL-5 production and eosinophilic inflammation induced by nematode infection (Nippostrongylus brasiliensis or Heligmosomoides polygyrus) were detected. Thus, the level of Ras activation in T cells appears to determine Th2-dependent eosinophilic inflammation and Ag-induced airway hyperresponsiveness.  相似文献   

8.
Asthma is a chronic inflammatory disease of the lung resulting in airway obstruction. The airway inflammation of asthma is strongly linked to Th2 lymphocytes and their cytokines, particularly IL-4, IL-5, and IL-13, which regulate airway hyperresponsiveness, eosinophil activation, mucus production, and IgE secretion. Historically, complement was not thought to contribute to the pathogenesis of asthma. However, our previous reports have demonstrated that complement contributes to bronchial hyperreactivity, recruitment of airway eosinophils, IL-4 production, and IgE responses in a mouse model of pulmonary allergy. To define the complement activation fragments that mediate these effects, we assessed the role of the complement anaphylatoxin C3a in a mouse model of pulmonary allergy by challenging C3aR-deficient mice intranasally with a mixed Ag preparation of Aspergillus fumigatus cell culture filtrate and OVA. Analysis by plethysmography after challenge revealed an attenuation in airway hyperresponsiveness in C3aR-deficient mice relative to wild-type mice. C3aR-deficient mice also had an 88% decrease in airway eosinophils and a 59% reduction in lung IL-4-producing cells. Consistent with the reduced numbers of IL-4-producing cells, C3aR-deficient mice had diminished bronchoalveolar lavage levels of the Th2 cytokines, IL-5 and IL-13. C3aR knockout mice also exhibited decreases in IgE titers as well as reduced mucus production. Collectively, these data highlight the importance of complement activation, the C3a anaphylatoxin, and its receptor during Th2 development in this experimental model and implicate these molecules as possible therapeutic targets in diseases such as asthma.  相似文献   

9.
Dendritic cells (DC) are important APCs that control allergen-induced airway responses by interacting directly with T cells. Leukotriene B(4) (LTB(4)), interacting with its high-affinity receptor, LTB(4) receptor 1 (BLT1), is known to attract and activate leukocytes during inflammation. We have previously shown that BLT1 expression on Ag-primed T cells is required for the development of airway hyperresponsiveness (AHR; Miyahara et al. 2005. Am. J. Respir. Crit. Care Med. 172: 161-167). However, the role for the LTB(4)-BLT1 pathway in DC function in allergen-induced airway responses has not been defined. Bone marrow-derived DCs (BMDC) were generated. Naive BALB/c mice received OVA-pulsed BLT1-deficient (BLT1(-/-)) BMDCs or wild-type BMDCs intratracheally and were then challenged with OVA for 3 days. Airway responses were monitored 48 h after the last allergen challenge. BLT1(-/-) BMDCs showed normal maturation judged from surface expression of CD markers. Compared with recipients of wild-type BMDCs, mice that received BLT1(-/-) BMDCs developed significantly lower AHR to inhaled methacholine, lower goblet cell metaplasia, and eosinophilic infiltration in the airways and decreased levels of Th2 type cytokines in the bronchoalveolar lavage fluid. Migration of BLT1(-/-) BMDCs into peribronchial lymph nodes was significantly impaired compared with BLT1(+/+) BMDCs after intratracheal instillation. These data suggest that BLT1 expression on DCs is required for migration of DCs to regional lymph nodes as well as in the development of AHR and airway inflammation.  相似文献   

10.
Asthma is a chronic disease of the lung resulting from airway obstruction. Although the initiating causes are not entirely clear, the airway inflammation in asthma is associated with Th2 lymphocytes and their cytokines, particularly IL-4, which play a prominent role in this disease by regulating airway hyperresponsiveness, eosinophil activation, and IgE synthesis. Historically, complement was not thought to contribute to the pathogenesis of asthma. However, using C3-deficient mice in an allergen-induced model of pulmonary allergy, we demonstrate that complement may impact key features of this disease. When challenged with allergen, mice deficient in C3 exhibit diminished airway hyperresponsiveness and lung eosinophilia. Furthermore, these mice also have dramatically reduced numbers of IL-4-producing cells and attenuated Ag-specific IgE and IgG1 responses. Collectively, these results demonstrate that C3-deficient mice have significantly altered allergic lung responses and indicate a role for the complement system in promoting Th2 effector functions in asthma.  相似文献   

11.
TLRs are primary sensors of both innate and adaptive immune systems, where they play a pivotal role in the response directed against structurally conserved components of pathogens. Synthetic bacterial lipopeptide Pam3CSK4 is a TLR2 agonist capable of modulating Th1 and Th2 responses. This study examines the therapeutic effect of Pam3CSK4 in established airway inflammation in a murine model of asthma. In mice previously sensitized and challenged with OVA, Pam3CSK4 given i.p. markedly reduced the total inflammatory cell infiltrate and eosinophilia in bronchoalveolar lavage fluid. Pam3CSK4 therapy was associated with a reduction in OVA-induced IL-4 and IL-5 secretion from thoracic lymph node culture, airways inflammation, bronchial hyperresponsiveness, and serum levels of IgE. Pam3CSK4 therapy was also associated with an increase in OVA-induced IFN-gamma, IL-12, and IL-10 production. However, the anti-inflammatory effect of Pam3CSK4 was independent of IL-10 or TGF-beta, but was critically dependent on IL-12, the production of which by dendritic cells was enhanced by Pam3CSK4 in vitro. Our results provide direct evidence that Pam3CSK4 could represent a novel therapeutic agent in allergic airways disease.  相似文献   

12.
Mammals have at least two receptors for LTB4; high-affinity BLT1 and low-affinity BLT2, both of which are GPCRs. 12-HHT serves as a more potent and abundant ligand for BLT2 than LTB4. BLT1 is expressed in a variety of inflammatory and immune cells including granulocytes, eosinophils, macrophages, differentiated Th1, Th2 and Th17 cells, effecter CD8+ T cells, dendritic cells and osteoclasts. BLT1 antagonists will be beneficial for the treatment of various diseases such as bronchial asthma, multiple sclerosis, contact dermatitis, and postmenopausal osteoporosis. BLT2 plays different roles from BLT1, and one important role of BLT2 is the maintenance of mucosal integrity in the colon.  相似文献   

13.
Chronic airway inflammation is a hallmark of asthma, an immune-based disease with great societal impact. Honokiol (HNK), a phenolic neurotransmitter receptor (γ-aminobutyric acid type A) agonist purified from magnolia, has anti-inflammatory properties, including stabilization of inflammation in experimentally induced arthritis. The present study tested the prediction that HNK could inhibit the chronic inflammatory component of allergic asthma. C57BL/6 mice sensitized to and challenged with OVA had increased airway hyperresponsiveness to methacholine challenge and eosinophilia compared with naive controls. HNK-treated mice showed a reduction in airway hyperresponsiveness as well as a significant decrease in lung eosinophilia. Histopathology studies revealed a marked drop in lung inflammation, goblet cell hyperplasia, and collagen deposition with HNK treatment. Ag recall responses from HNK-treated mice showed decreased proinflammatory cytokines in response to OVA, including TNF-α-, IL-6-, Th1-, and Th17-type cytokines, despite an increase in Th2-type cytokines. Regulatory cytokines IL-10 and TGF-β were also increased. Assessment of lung homogenates revealed a similar pattern of cytokines, with a noted increase in the number of FoxP3(+) cells in the lung. HNK was able to alter B and T lymphocyte cytokine secretion in a γ-aminobutyric acid type A-dependent manner. These results indicate that symptoms and pathology of asthma can be alleviated even in the presence of increased Th2 cytokines and that neurotransmitter agonists such as HNK have promise as a novel class of anti-inflammatory agents in the treatment of chronic asthma.  相似文献   

14.
Epidemiological and experimental evidence supports the notion that microbial infections that are known to induce Th1-type immune responses can suppress Th2 immune responses, which are characteristics of allergic disorders. However, live microbial immunization might not be feasible for human immunotherapy. Here, we evaluated whether induction of Th1 immunity by the immunostimulatory sequences of CpG-oligodeoxynucleotides (CpG-ODN), with or without culture filtrate proteins (CFP), from Mycobacterium tuberculosis would suppress ongoing allergic lung disease. Presensitized and ovalbumin (OVA)-challenged mice were treated subcutaneously with CpG, or CpG in combination with CFP (CpG/CFP). After 15 days of treatment, airway inflammation and specific T- and B-cell responses were determined. Cell transfer experiments were also performed. CpG treatment attenuated airway allergic disease; however, the combination CpG/CFP treatment was significantly more effective in decreasing airway hyperresponsiveness, eosinophilia and Th2 response. When an additional intranasal dose of CFP was given, allergy was even more attenuated. The CpG/CFP therapy also reduced allergen-specific IgG1 and IgE antibodies and increased IgG2a. Transfer of spleen cells from mice immunized with CpG/CFP also reduced allergic lung inflammation. CpG/CFP treatment induced CFP-specific production of IFN-γ and IL-10 by spleen cells and increased production of IFN-γ in response to OVA. The essential role of IFN-γ for the therapeutic effect of CpG/CFP was evidenced in IFN-γ knockout mice. These results show that CpG/CFP treatment reverses established Th2 allergic responses by an IFN-γ-dependent mechanism that seems to act both locally in the lung and systemically to decrease allergen-specific Th2 responses.  相似文献   

15.
Interleukin (IL)-17 is recognized to play a critical role in numerous immune and inflammatory responses by regulating the expression of various inflammatory mediators, which include cytokines, chemokines, and adhesion molecules. There is growing evidence that IL-17 is involved in the pathogenesis of asthma. IL-17 orchestrates the neutrophilic influx into the airways and also enhances T-helper 2 (Th2) cell-mediated eosinophilic airway inflammation in asthma. Recent studies have demonstrated that not only inhibitor of IL-17 per se but also diverse regulators of IL-17 expression reduce antigen-induced airway inflammation, bronchial hyperresponsiveness, and Th2 cytokine levels in animal models of asthma. This review will summarize the role of IL-17 in the context of allergic airway inflammation and discuss the therapeutic potential of various strategies targeting IL-17 for asthma.  相似文献   

16.
In asthma, T helper 2 (T(H)2)-type cytokines such as interleukin (IL)-4, IL-5, and IL-13 are produced by activated CD4(+) T cells. Dendritic cells played an important role in determining the fate of naive T cells into either T(H)1 or T(H)2 cells. We determined whether RG-II regulates the T(H)1/T(H)2 immune response by using an ovalbumin-induced murine model of asthma. RG-II reduced IL-4 production but increased interferon- gamma production, and inhibited GATA-3 gene expression. RG-II also inhibited asthmatic reactions including an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyperresponsiveness. This study provides evidence that RG-II plays a critical role in ameliorating the pathogenic process of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of RG-II in terms of its effects in a murine model of asthma.  相似文献   

17.
We have found a novel anti-allergic agent, M50367, which suppresses IgE biosynthesis and eosinophil accumulation in vivo. In this study, we evaluated the ability of M50367 to modulate Th1/Th2 balance in Th2-background BALB/c mice and to inhibit airway hyperresponsiveness in a murine model of atopic asthma. Oral M50367 at 3-30 mg/kg/day exhibited 51 to 73% reduction of IL-4/IL-5 production and 2- to 5-fold augmentation of IFN-gamma production by Ag-stimulated cultured splenocytes of the mice sensitized with DNP-Ascaris. These alterations in Th1/Th2 cytokine production were accompanied by 55-85% suppression of plasma IgE level. Oral M50367 at a dose of 10 mg/kg/day significantly inhibited Ig-independent peritoneal eosinophilia by 54%, which was induced by repeated i.p. injections of Ascaris suum extract. To develop airway hyperresponsiveness caused by allergic airway inflammation, BALB/c mice were sensitized with i.p. OVA injections, followed three times by OVA inhalation. Oral M50367 significantly inhibited the increase in airway reactivity to acetylcholine, together with the elevation of plasma IgE level and pulmonary eosinophilia, which were observed in vehicle-treated mice 1 day after the last inhalation. Moreover, M50367 treatment reduced IL-4 and IL-5 production and tended to enhance IFN-gamma production, not only by cultured splenocytes, but also in bronchoalveolar lavage fluid. These results suggest that M50367 has a modulating ability of Th1/Th2 balance to down-regulate Th2 response in the circulating system as well as at the sites of inflammation, and may be beneficial for the treatment of allergic disorders such as atopic asthma.  相似文献   

18.
Antibody-antigen interactions in the airway initiate inflammation in acute asthma exacerbations. This inflammatory response is characterized by the recruitment of granulocytes into the airways. In murine models of asthma, granulocyte recruitment into the lung contributes to the development of airway hyperresponsiveness (AHR), mucus production, and airway remodeling. Leukotriene B4 is a mediator released following antigen challenge that has chemotactic activity for granulocytes, mediated through its receptor, BLT1. We investigated the role of BLT1 in granulocyte recruitment following antigen challenge. Wild-type mice and BLT1-/- mice were sensitized and challenged with ovalbumin (OVA) to induce acute allergic airway inflammation. In addition, to explore the relevance to antibody-antigen interactions, we injected OVA bound to anti-OVA IgG1 or anti-OVA IgE intratracheally into na?ve wild-type and BLT1-/- mice. Cell composition of the lungs, cytokine levels, histology, and AHR were determined. After sensitization and challenge with ovalbumin, there was significantly reduced neutrophil and eosinophil recruitment into the airways of BLT1-/- mice compared with wild-type animals after one or two daily antigen challenges, but this difference was not seen after three or four daily antigen challenges. Mucus production and AHR were not affected. Intratracheal injection of OVA bound to IgG1 or IgE induced neutrophil recruitment into the airways in wild-type mice but not in the BLT1-/- mice. We conclude that BLT1 mediates early recruitment of granulocytes into the airway in response to antigen-antibody interactions in a murine model of acute asthma.  相似文献   

19.
More than 30 lipid ligands, which express their biological activities through cognate G-protein-coupled receptors (GPCRs), have been reported. Among them, leukotriene B(4) (LTB(4)) is a potent lipid mediator involved in host defense, inflammation, and the immune responses. Two GPCRs for LTB(4) (BLT1 and BLT2) have been cloned and analyzed. Recent studies using genetically engineered mice suggest that BLT1 plays an important role in several inflammatory diseases including ischemic reperfusion tissue injury, atherosclerosis, and bronchial asthma. BLT1 is also a good tool to study the molecular mechanism of GPCR activation and inactivation in vitro. In this brief review, we focus on the biological and biochemical properties of BLT1 with special attention to the putative helix 8 of the receptor.  相似文献   

20.
IL-27 up-regulates Th1 but down-regulates Th2 responses. However, its molecular mechanism and regulatory effects on polarized Th2 cells remain unclear. In this study, we have revealed that IL-27 inhibits Th2 cell development as well as Th2 cytokines production from already polarized Th2 cells by down-regulation of GATA-3 and up-regulation of T-bet expression simultaneously. In vivo daily IL-27 treatment for 1 wk after Leishmania major infection protects BALB/c mice from footpad swelling by diminishing parasite burden via reciprocal regulation of Th1 and Th2 responses. Furthermore, IL-27 stimulation causes marked reduction in the capacity of host mouse to mount a Th2 response against Strongyloides venezuelensis infection. Thus, IL-27-treated mice failed to develop intestinal mastocytosis after S. venezuelensis infection and exhibited a marked delay in parasite expulsion. Finally, intranasal administration of IL-27 inhibits OVA-induced airway hyperresponsiveness and inflammation in OVA-sensitized animals. Thus, IL-27 could provide us with a novel therapeutic way for treating Th2-associated diseases such as bronchial asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号