首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and larval dry weight (DW) (mass scaling exponent) at a constant temperature of 26°C, (b) measure the RMR under light and darkness and (c) test whether the interindividual differences in the RMR are related to larval nutritional status (RNA/DNA and DNA/DW). The RMR scaled nearly isometrically with body size (b = 0.99, 0.60–31.56 mg DW) in contrast to the allometric relationship observed in most fish larvae (average b = 0.87). The results show no significant differences in larval RMR under light and darkness, suggesting similar larval activity levels in both conditions. The size explained most of the variability in RMR (97%), and nutritional condition was unrelated to the interindividual differences in routine metabolism. This is the first study to report the metabolic rates of Atlantic bluefin tuna larvae and discuss the challenges of performing bioenergetic studies with early life stages of scombrids.  相似文献   

2.
The cDNA sequences of vitellogenin receptor proteins (VgR(+) and VgR(-)), containing or lacking the O-linked sugar domain, were determined in Atlantic bluefin tuna (Thunnus thynnus L.). VgR(-) gene expression in the ovary was compared in captive-reared and wild Atlantic bluefin tuna during the reproductive cycle. Gonad samples from adult fish were sampled from 2008 to 2010 from stocks reared in captivity at different commercial fattening operations in the Mediterranean Sea and from wild individuals caught either by traditional tuna traps during their migration towards the spawning grounds in the Mediterranean Sea or by the long-line artisanal fishery. In addition, juvenile male and female Atlantic bluefin tuna were sampled from a farming facility, to obtain baseline information and pre-adulthood amounts of VgR(-). The total length of VgR(+) cDNA was 4006 nucleotides (nt) and that of VgR(-) was 3946 nt. Relative amounts of VgR(-) were greater in juvenile females and in those adults having only previtellogenic oocytes (119 ± 55 and 146 ± 26 folds more than juvenile males, respectively). Amounts of VgR(-) were less in individuals with yolked oocytes (ripening stage, May-June) and increased after spawning in July (92 ± 20 and 113 ± 13 folds more than juvenile males in ripening and post-spawning fish, respectively). These data suggest that regulation of VgR(-) is not under oestrogen control. During the ripening period, greater VgR(-) gene expression was observed in wild fish than in fish reared in captivity, possibly because of (a) differences in water temperature exposure and/or energy storage, and/or (b) an inadequate diet in reared Atlantic bluefin tuna.  相似文献   

3.
The spectral sensitivity of the fish and the suitable light wavelength range for survival and growth performance of juvenile Pacific bluefin tuna (PBT) were investigated. The spectral sensitivity peak of PBT under photopic condition was observed between 449 and 503 nm, which corresponded to their natural habitat. The fish were reared in tanks irradiated continuously with 4 kinds of light emitting diodes (LEDs). The maximum wavelength of LEDs used for the rearing experiment were 460 nm (blue), 520 nm (green), 630 nm (red), and 450–680 nm (white). There was no notable difference in survival rate among fish in the four LED groups. However, the growth of juvenile PBT was lesser under red light compared to the green and white light wavelengths. These results suggest that PBT juveniles have low sensitivity to red light because the fish are rarely exposed to the red light wavelengths under natural ocean conditions. Thus, low sensitivity to red light negatively influenced the feeding behavior and growth of PBT juveniles.  相似文献   

4.
The sequence of vitellogenin A (VgA) and vitellogenin B (VgB) cDNAs in Atlantic bluefin tuna (Thunnus thynnus L.) were determined, and vitellogenin expression levels in the liver and oocyte yolk accumulation were compared in wild and captive-reared individuals. Liver and ovary samples were taken from 31 individuals reared experimentally in three commercial Atlantic bluefin tuna fattening sites in the Mediterranean Sea and from 33 wild individuals caught by commercial traps during the fish's migration towards their Mediterranean spawning grounds. The total length of VgA cDNA was 5585 nucleotides and that of VgB was 5267 nucleotides. The identity and similarity between deduced amino acid sequences of VgA and VgB were 60% and 78%, respectively. The Atlantic bluefin tuna VgA and VgB amino acid sequences have high similarities with those of other teleost fishes. Relative levels of VgA and VgB mRNAs were low in April, increased significantly during the reproductive period in May and June, and declined in July. There was a trend towards higher relative levels of VgA and VgB mRNAs in captive fish compared to wild individuals during the reproductive period. The surface occupied by eosinophilic yolk granules in fully vitellogenic oocytes, as well as the frequency of oocytes in late vitellogenesis, was significantly higher in captive compared to wild individuals. The study suggests that the experimental conditions under which Atlantic bluefin tuna individuals were reared allowed the occurrence of normal vitellogenesis, based on gene expression of VgA and VgB in the liver and yolk accumulation in the oocytes. The higher yolk accumulation and frequency of vitellogenic oocytes observed in the ovaries of captive fish suggest that improvements in feeding practices may result in an improved vitellogenic process.  相似文献   

5.
Some fish are warm-bodied, e.g. the bluefin tuna (Thunnus thynnus), which has a muscle temperature 12-17 degrees C higher than its environment. This endothermy is achieved by aerobic metabolism and conserved by means of a heat-exchanger system. The hemoglobins of bluefin tuna are adapted to these conditions by their endothermic oxygenation, thus contributing to the preservation of the body energy. This is a new and so far unique property of tuna hemoglobin. The primary structure of the alpha and beta chains of bluefin tuna hemoglobins is presented. The sequence was determined after enzymatic and chemical cleavages of the chains and sequencing of the peptides in gas- and liquid-phase sequencers. The alpha chains consists of 143 residues and are N-terminally acetylated. The beta chains have 146 amino acids and show two ambiguities at positions 140 and 142. The alpha chains differ from the human alpha chains in 65 amino-acid residues, the beta chains in 76. The hemoglobins of bluefin tuna, carp and man are compared and their different physiological properties are discussed in relation to the sequence data. From the primary structure of tuna hemoglobins, it is possible to propose a molecular basis for their peculiar endothermic transition from the T to the R structure.  相似文献   

6.
The lucrative and highly migratory Atlantic bluefin tuna, Thunnus thynnus (Linnaeus 1758; Scombridae), used to be distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the 1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate, we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and foraging.  相似文献   

7.
Bluefin tuna are endothermic and have higher temperatures, heart rates, and cardiac outputs than tropical tuna. We hypothesized that the increased cardiovascular capacity to deliver oxygen in bluefin may be associated with the evolution of higher metabolic rates. This study measured the oxygen consumption of juvenile Pacific bluefin Thunnus orientalis and yellowfin tuna Thunnus albacares swimming in a swim-tunnel respirometer at 20 degrees C. Oxygen consumption (Mo2) of bluefin (7.1-9.4 kg) ranged from 235+/-38 mg kg(-1) h(-1) at 0.85 body length (BL) s(-1) to 498+/-55 mg kg(-1) h(-1) at 1.80 BL s(-1). Minimal metabolic rates of swimming bluefin were 222+/-24 mg O(2) kg(-1) h(-1) at speeds of 0.75 to 1.0 BL s(-1). Mo2 of T. albacares (3.7-7.4 kg) ranged from 164+/-18 mg kg(-1) h(-1) at 0.65 BL s(-1) to 405+/-105 mg kg(-1) h(-1) at 1.8 BL s(-1). Bluefin tuna had higher metabolic rates than yellowfin tuna at all swimming speeds tested. At a given speed, bluefin had higher metabolic rates and swam with higher tailbeat frequencies and shorter stride lengths than yellowfin. The higher M dot o2 recorded in Pacific bluefin tuna is consistent with the elevated cardiac performance and enhanced capacity for excitation-contraction coupling in cardiac myocytes of these fish. These physiological traits may underlie thermal-niche expansion of bluefin tuna relative to tropical tuna species.  相似文献   

8.
Growth models describe the change in length or weight as a function of age. Growth curves in tunas can take different forms from relatively simple von Bertalanffy growth curves (Atlantic bluefin, albacore tunas) to more complex two- or three-stanza growth curves (yellowfin, bigeye, skipjack, southern bluefin tunas). We reviewed the growth of the principal market tunas (albacore, bigeye, skipjack, yellowfin and the three bluefin tuna species) in all oceans to ascertain the different growth rates among tuna species and their implications for population productivity and resilience. Tunas are among the fastest-growing of all fishes. Compared to other species, tunas exhibit rapid growth (i.e., relatively high K) and achieve large body sizes (i.e., high L ). A comparison of their growth functions reveals that tunas have evolved different growth strategies. Tunas attain asymptotic sizes (L ), ranging from 75 cm FL (skipjack tuna) to 400 cm FL (Atlantic bluefin tuna), and reach L at different rates (K), varying from 0.95 year?1 (skipjack tuna) to 0.05 year?1 (Atlantic bluefin tuna). Skipjack tuna (followed by yellowfin tuna) is considered the “fastest growing” species of all tunas. Growth characteristics have important implications for population dynamics and fisheries management outcomes since tunas, and other fish species, with faster growth rates generally support higher estimates of Maximum Sustainable Yield (MSY) than species with slower growth rates.  相似文献   

9.
As there is a lack of information on the growth and migrations of bluefin tuna, information about them was gathered using the structural and chemical characteristics of their otoliths and mercury levels in body tissues as indicators of physiological and habitat characteristics. The otoliths of juvenile tuna caught in the Spanish Mediterranean littoral were studied. Otolith increments, assumed to be formed daily, were enumerated. Measurements by wavelength dispersive electron microprobe confirmed the presence of strontium in otolith tissue, and an inverse relationship between strontium/calcium (Sr/Ca) concentration ratio and temperature is suggested. Electron microprobe analyses combined with daily increment analyses of otoliths provided life history profiles for individual fish. Additional Sr/Ca concentration ratio data on fish supported the idea that Sr/Ca ratios can provide information on the environmental history of individual fish. Body concentrations of mercury were related to otolith analyses to suggest age structure, critical life history periods, growth environment, stock structure, food web position, and migration history. The techniques applied present an innovative approach to management-related problems, and the combination of chemical analyses with structural analyses promises to expand our knowledge of the life history of migratory fishes.  相似文献   

10.
11.
Rising ocean temperatures are causing marine fish species to shift spatial distributions and ranges, and are altering predator‐prey dynamics in food webs. Most documented cases of species shifts so far involve relatively small species at lower trophic levels, and consider individual species in ecological isolation from others. Here, we show that a large highly migratory top predator fish species has entered a high latitude subpolar area beyond its usual range. Bluefin tuna, Thunnus thynnus Linnaeus 1758, were captured in waters east of Greenland (65°N) in August 2012 during exploratory fishing for Atlantic mackerel, Scomber scombrus Linnaeus 1758. The bluefin tuna were captured in a single net‐haul in 9–11 °C water together with 6 tonnes of mackerel, which is a preferred prey species and itself a new immigrant to the area. Regional temperatures in August 2012 were historically high and contributed to a warming trend since 1985, when temperatures began to rise. The presence of bluefin tuna in this region is likely due to a combination of warm temperatures that are physiologically more tolerable and immigration of an important prey species to the region. We conclude that a cascade of climate change impacts is restructuring the food web in east Greenland waters.  相似文献   

12.
Pacific bluefin tuna are active teleost fish with a large capacity for heat conservation and endothermy. They have a high metabolism, and hence the myocardium must be capable of sustaining elevated levels of cardiac output over a wide range of temperatures. To examine the way that the myocardial cells of bluefin tuna respond to their unique cardiac physiology, we have studied the ultrastructure of the internal membrane system and mitochondria of atrial and ventricular myocytes by light and electron microscopy. Our results reveal that cardiomyocytes of juvenile bluefin tuna posses a relatively high content of sarcoplasmic reticulum (SR), together with a large volume of mitochondria within the two (compact and spongy) ventricular compartments and in the atrial myocardium. The mitochondrial structure and distribution in bluefin tuna myocardium follow specific metabolic zonation resulting in a higher volume and lower cristae density in the compact ventricular layer than in atrium and spongy layer. The presence of junctional SR profiles and an extensive network of free SR within cells may ensure a rapid delivery of Ca(2+) to the myofibrils. This, in conjunction with transarcolemmal Ca(2+) entry, might contribute to a faster excitation-contraction-relaxation cycle and thus enhance cardiac performance, cardiac output, and the maintenance of excitability at low temperatures. We propose that the mitochondrial configuration together with the developed SR ultrastructure of bluefin tunas myocardium are important evolutionary steps for the maintenance of high heart rates and endothermy in this teleost fish.  相似文献   

13.
Kudoa hexapunctata was taxonomically separated from Kudoa neothunni, but their main host is tuna. K. hexapunctata has been identified as causative agent of foodborne diseases associated with the ingestion of raw Pacific bluefin tuna (PBT) in Japan, but K. neothunni has not. Therefore, it is clinically and epidemiologically important to detect and distinguish these two species. In the present study, we developed a novel duplex polymerase chain reaction (dPCR) targeting the 28S rRNA gene sequences of K. hexapunctata and K. neothunni. The dPCR amplified the desired genetic regions of each species, and the detection limit was 10 copies/reaction. A total of 36 retail tuna samples from different fishing ports were purchased and tested by dPCR. Thirty-one tested positive for K. hexapunctata and four tested positive for K. neothunni. Several retail PBT samples were examined in some of the fishing ports, and among these samples, the detection rates of K. hexapunctata was higher than 85%, and the rates were similar between wild and farmed PBT. The detection rates of K. hexapunctata in wild and farmed retail PBT were 75% and 71%, respectively, in May. However, the rates in June and July were 100% for both. K. hexapunctata and K. neothunni myxospores were not observed in the dPCR-positive samples, except in juvenile PBT, suggesting that the number of parasites was insufficient to cause foodborne disease. Thus, dPCR is a useful method for detecting and distinguishing K. hexapunctata and K. neothunni, and can be used in epidemiological studies of these parasites.  相似文献   

14.
RNA/DNA ratio is a useful and reliable indicator of the nutritional status of fish larvae and juveniles. In order to assess the nutritional status of field-caught larval Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel), starvation experiments of hatchery-reared larvae were conducted and changes in the RNA/DNA ratio of fed and starved larvae were analyzed. Starvation experiments were conducted every 3 days after first feeding. The survival rate of Pacific bluefin tuna larvae ranged 10-50% after 1 day of starved conditions and growth retardation was observed immediately. These results suggest that Pacific bluefin tuna larvae have a very low tolerance to starvation. The RNA/DNA ratios of fed larvae were approximately 2.0-4.0. On the other hand, the value of starved larvae significantly decreased to 1.0-3.0. The nutritional status of 3 cohorts of field-caught tuna larvae collected in the northwestern Pacific Ocean was examined based on the value of the RNA/DNA ratio of the 1 day starved larvae. 4.35-25.77% of the cohorts were regarded as the “starving condition”, which was negatively correlated to the ambient prey densities. These findings suggest that the nutritional condition of larval Pacific bluefin tuna was influenced by the ambient prey density, and starvation itself and starvation-induced predation could greatly contribute to mortality in the larval period of Pacific bluefin tuna.  相似文献   

15.
The habitat and movements of a Pacific bluefin tuna were investigated by reanalyzing archival tag data with sea surface temperature data. During its trans-Pacific migration to the eastern Pacific, the fish took a direct path and primarily utilized waters, in the Subarctic Frontal Zone (SFZ). Mean ambient temperature during the trans-Pacific migration was 14.5 ± 2.9 (°C ± SD), which is significantly colder than the waters typically inhabited by bluefin tuna in their primary feeding grounds in the western and eastern Pacific (17.6 ± 2.1). The fish moved rapidly through the colder water, and the heat produced during swimming and the thermoconservation ability of bluefin tuna likely enabled it to migrate through the cold waters of the SFZ.  相似文献   

16.
Recent physiological studies on the cardiovascular performance of tunas suggest that the elevated heart rates of these fish may rely on increased use of intracellular sarcoplasmic reticulum (SR) Ca2+ stores. In this study, we compare the cellular cardiac performance in endothermic tunas (bluefin, albacore, yellowfin) and their ectothermic sister taxa (mackerel) in response to acute temperature change. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) plays a major role during cardiac excitation-contraction (E-C) coupling, transporting Ca2+ from the cytosol into the lumen of the SR and thus promoting the relaxation of the muscle. Measurements of oxalate-supported Ca2+ uptake in SR-enriched ventricular vesicles indicated that tunas were capable of sustaining a rate of Ca2+ uptake that was significantly higher than the mackerel. Among tunas, the cold-tolerant bluefin had the highest rates of SR Ca2+ uptake and ATPase activity. The differences among Ca2+ uptake and ATP hydrolysis rates do not seem to result from intrinsic differences between the SERCA2 present in the different tunas, as shown by their similar temperature sensitivities and similar values for activation energy. Western blots reveal that increased SERCA2 protein content is associated with the higher Ca2+ uptake and ATPase activities seen in bluefin ventricles compared with albacore, yellowfin, and mackerel. We hypothesize that a key step in the evolution of high heart rate and high metabolic rate in tunas is increased activity of the SERCA2 enzyme. We also suggest that high levels of SERCA2 in bluefin tuna hearts may be important for retaining cardiac function at cold temperatures.  相似文献   

17.
The ovarian mass and gonadosomatic index (IG) of bluefin tuna Thunnus thynnus , caught in the Strait of Gibraltar (Barbate) during migration to Mediterranean spawning grounds, were several times lower than those found in bluefin tuna from Mediterranean spawning grounds (Balearic Islands). Some of the bluefin tuna from Barbate (8.3%) were classified as immature (the most advanced oocytes present in the ovaries were early vitellogenic), and the majority (the remaining 91.6%) as non-spawning mature; the ovary contained late vitellogenic oocytes, but there was no sign of spawning activity. Stereological estimation indicated that the ovaries of spawning bluefin tuna from the Balearic Islands contained five-fold more highly yolked oocytes than bluefin tuna from Barbate. When breeding bluefin tuna cross the Strait of Gibraltar the gonad is at an incipient stage of maturation. The average batch fecundity estimated from stereological quantification of stage 4 (migratory-nucleus) oocytes in the specimens collected from Balearic was 92.8 oocytes g-1'of body mass, and the spawning frequency in this area was calculated to be 1.2 days. In specimens from Barbate a relative batch fecundity of 96.3 oocytes g -1 was estimated using stage 3 (late vitellogenic) oocyte counts.  相似文献   

18.
Tunas are capable of exceptionally high maximum metabolic rates; such capability requires rapid delivery of oxygen and metabolic substrate to the tissues. This requirement is met, in part, by exceptionally high maximum cardiac outputs, opening the possibility that myocardial Ca(2+) delivery is enhanced in myocytes from tuna compared with those from other fish. In this study, we investigated the electrophysiological properties of the cardiac L-type Ca(2+) channel current (I(Ca)) to test the hypothesis that Ca(2+) influx would be large and have faster kinetics in cardiomyocytes from Pacific bluefin tuna (Thunnus orientalis) than in those from its sister taxon, the Pacific mackerel (Scombe japonicus). In accordance with this hypothesis, I(Ca) in atrial myocytes from bluefin tuna had significantly greater peak current amplitudes and faster fast inactivation kinetics (-4.4 +/- 0.2 pA/pF and 25.9 +/- 1.6 ms, respectively) than those from mackerel (-2.7 +/- 0.5 pA/pF and 32.3 +/- 3.8 ms, respectively). Steady-state activation, inactivation, and recovery from inactivation were also faster in atrial myocytes from tuna than from mackerel. In ventricular myocytes, current amplitude and activation and inactivation rates were similar in both species but elevated compared with those of other teleosts. These results indicate enhanced I(Ca) in atrial myocytes from bluefin tuna compared with Pacific mackerel; this enhanced I(Ca) may be associated with elevated cardiac performance, because I(Ca) delivers the majority of Ca(2+) involved in excitation-contraction coupling in most fish hearts. Similarly, I(Ca) is enhanced in the ventricle of both species compared with other teleosts and may play a role in the robust cardiac performance of fishes of the family Scombridae.  相似文献   

19.
This study gives relevant information on the diet composition of the bluefin tuna (Thunnus thynnus) during the spawning period in the eastern Mediterranean Sea. The stomach contents of 218 bluefin tuna were sampled from 2003 to 2006 during the fishing season (May–June) aboard purse seiners operating in the northern Levantine Sea off the coast of Turkey. Stomachs were removed from the fish soon after landing and kept frozen at ?18°C until analysis. Prey items were classified into large taxonomic categories and preserved in 70% ethanol. A total of 745 different prey specimens belonging to 47 taxa were identified, including 34 species of fish, 11 of squid, and two of crustaceans. The most important fish and cephalopod prey belonged to the families Myctophidae, Carangidae, Chauliodontidae, Paralepididae, and Octopoda. This study marks the observation of myctophid fish in the stomach contents of bluefin tuna from the Mediterranean Sea. The paper offers some new information of regional importance and compares the feeding habits of the species to other regions, bringing confirmation on the opportunistic feeding ecology of the species in the enclosed Mediterranean Sea, where bluefin tuna seasonally occur as a strong cohort. New information on the diet composition of T. thynnus in the eastern Mediterranean Sea is revealed; the findings indicate that, depending on the abundance of the different prey species in the habitat, the dominant prey species can be distinctive.  相似文献   

20.
The diets of 1219 southern bluefin tuna, Thunnus maccoyii, from inshore (shelf) and offshore (oceanic) waters off eastern Tasmania were examined between 1992 and 1994. Immature fish (< 155 cm fork length) made up 88% of those examined. In all, 92 prey taxa were identified. Inshore, the main prey were fish (Trachurus declivis and Emmelichthys nitidus) and juvenile squid (Nototodarus gouldi). Offshore, the diversity was greater, reflecting the diversity of micronekton in these waters. Interestingly, macrozooplankton prey (e.g. Phronima sedentaria) were prevalent in tuna > 150 cm. The offshore tuna, when in subantarctic waters, ate relatively more squid than when in the East Australia Current. In the latter, fish and crustacea were more important, although there were variations between years. No relationship was found between either prey type or size with size of tuna. Feeding was significantly higher in the morning than at other times of the day. The mean weight of prey was significantly higher in inshore-caught tuna than in those caught offshore. We estimated that the mean daily ration of southern bluefin tuna off eastern Tasmania was 0.97% of wet body weight day−1. However, the daily ration of inshore-caught tuna was ∼ 3 times higher (2.7%) than for tuna caught offshore (0.8%) indicating that feeding conditions on the shelf were better than those offshore. Our results indicate that the inshore waters of eastern Tasmania are an important feeding area for, at least, immature southern bluefin tuna. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号