首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Background

There have been conflicting observations regarding the receptors utilized by human multipotent mesenchymal bone marrow stromal cells (hMSC) to adhere to endothelial cells (EC). To address the discrepancies, we performed experiments with cells prepared with a standardized, low-density protocol preserving a sub-population of small cells that are rapidly self-renewing.

Methods

Sialyl Lewis X (SLeX) and α4 integrin expression were determined by flow cytometry. Fucosyltransferase expression was determined by quantitative realtime RT-PCR. Cell adhesion assays were carried out with a panel of endothelial cells from arteries, veins and the microvasculature in vitro. In vivo experiments were performed to determine single cell interactions in the chick embryo chorioallantoic membrane (CAM). The CAM is a well-characterized respiratory organ allowing for time-lapse image acquisition of large numbers of cells treated with blocking antibodies against adhesion molecules expressed on hMSC.

Results

hMSC expressed α4 integrin, SLeX and fucosyltransferase 4 and adhered to human EC from arteries, veins and the microvasculature under static conditions in vitro. In vivo, hMSC rolled on and adhered to arterioles in the chick embryo CAM, whereas control melanoma cells embolized. Inhibition of α4 integrin and/or SLeX with blocking antibodies reduced rolling and adhesion in arterioles and increased embolism of hMSC.

Conclusions

The results demonstrated that rapidly self-renewing hMSC were retained in the CAM because they rolled on and adhered to respiratory arteriolar EC in an α4 integrin- and SLeX-dependent manner. It is therefore important to select cells based on their cell adhesion receptor profile as well as size depending on the intended target of the cell and the injection route.  相似文献   

2.

Background

Epidemiological studies have shown that unfiltered coffee consumption is associated with a low incidence of cancer. This study aims to identify the effects of kahweol, an antioxidant diterpene contained in unfiltered coffee, on angiogenesis and key inflammatory molecules.

Methodology/Principal Findings

The experimental procedures included in vivo angiogenesis assays (both the chicken and quail choriallantoic membrane assay and the angiogenesis assay with fluorescent zebrafish), the ex vivo mouse aortic ring assay and the in vitro analysis of the effects of treatment of human endothelial cells with kahweol in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Additionally, two inflammation markers were determined, namely, the expression levels of cyclooxygenase 2 and the levels of secreted monocyte chemoattractant protein-1. We show for the first time that kahweol is an anti-angiogenic compound with inhibitory effects in two in vivo and one ex vivo angiogenesis models, with effects on specific steps of the angiogenic process: endothelial cell proliferation, migration, invasion and tube formation on Matrigel. We also demonstrate the inhibitory effect of kahweol on the endothelial cell potential to remodel extracellular matrix by targeting two key molecules involved in the process, MMP-2 and uPA. Finally, the anti-inflammatory potential of this compound is demonstrated by its inhibition of both COX-2 expression and MCP-1 secretion in endothelial cells.

Conclusion/Significance

Taken together, our data indicate that, indeed, kahweol behaves as an anti-inflammatory and anti-angiogenic compound with potential use in antitumoral therapies. These data may contribute to the explanation of the reported antitumoral effects of kahweol, including the recent epidemiological meta-analysis showing that drinking coffee could decrease the risk of certain cancers.  相似文献   

3.

Background

The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu.

Methodology/Principal Findings

We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells.

Conclusions

This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.  相似文献   

4.

Background

The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis and myocardial repair.

Methodology/Principal Findings

Four peptides, 2 derived from fibronectin and 2 derived from Type IV Collagen, were assessed for in vitro and in vivo tendencies for angiogenesis. Three of the four peptides—Hep I, Hep III, RGD—were identified and shown to increase endothelial cell attachment, proliferation, migration and cell activation in vitro. By chemically conjugating these peptides to an anti-myosin heavy chain antibody, the peptides could be administered intravenously and specifically targeted to the site of the myocardial infarction. When administered into Sprague-Dawley rats that underwent ischemia-reperfusion myocardial infarction, these peptides produced statistically significantly higher levels of angiogenesis and arteriogenesis 6 weeks post treatment.

Conclusions/Significance

We demonstrated that antibody-targeted ECM-derived peptides alone can be used to sufficiently alter the extracellular matrix microenvironment to induce a dramatic angiogenic response in the myocardial infarct area. Our results indicate a potentially new non-invasive strategy for repairing damaged tissue, as well as a novel tool for investigating in vivo cell biology.  相似文献   

5.

Background

Radiotherapy is widely used to treat cancer. While rapidly dividing cancer cells are naturally considered the main target of radiotherapy, emerging evidence indicates that radiotherapy also affects endothelial cell functions, and possibly also their angiogenic capacity. In spite of its clinical relevance, such putative anti-angiogenic effect of radiotherapy has not been thoroughly characterized. We have investigated the effect of ionizing radiation on angiogenesis using in vivo, ex vivo and in vitro experimental models in combination with genetic and pharmacological interventions.

Principal Findings

Here we show that high doses ionizing radiation locally suppressed VEGF- and FGF-2-induced Matrigel plug angiogenesis in mice in vivo and prevented endothelial cell sprouting from mouse aortic rings following in vivo or ex vivo irradiation. Quiescent human endothelial cells exposed to ionizing radiation in vitro resisted apoptosis, demonstrated reduced sprouting, migration and proliferation capacities, showed enhanced adhesion to matrix proteins, and underwent premature senescence. Irradiation induced the expression of P53 and P21 proteins in endothelial cells, but p53 or p21 deficiency and P21 silencing did not prevent radiation-induced inhibition of sprouting or proliferation. Radiation induced Smad-2 phosphorylation in skin in vivo and in endothelial cells in vitro. Inhibition of the TGF-β type I receptor ALK5 rescued deficient endothelial cell sprouting and migration but not proliferation in vitro and restored defective Matrigel plug angiogenesis in irradiated mice in vivo. ALK5 inhibition, however, did not rescue deficient proliferation. Notch signaling, known to hinder angiogenesis, was activated by radiation but its inhibition, alone or in combination with ALK5 inhibition, did not rescue suppressed proliferation.

Conclusions

These results demonstrate that irradiation of quiescent endothelial cells suppresses subsequent angiogenesis and that ALK5 is a critical mediator of this suppression. These results extend our understanding of radiotherapy-induced endothelial dysfunctions, relevant to both therapeutic and unwanted effects of radiotherapy.  相似文献   

6.

Background

Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function.

Methods

For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model.

Results

Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2–5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1–2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression.

Conclusions

Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease.  相似文献   

7.
8.

Background

Matricellular proteins are extracellular regulators of cellular adhesion, signaling and performing a variety of physiological behaviors such as proliferation, migration and differentiation. Within vascular microenvironments, matricellular proteins exert both positive and negative regulatory cues to vascular endothelium. The relative balance of these matricellular cues is believed to be critical for vascular homeostasis, angiogenesis activation or angiogenesis resolution. However, our knowledge of matricellular proteins within vascular microenvironments and the mechanisms by which these proteins impact vascular function remain largely undefined. The matricellular protein lipocalin-7 (LCN7) is found throughout vascular microenvironments, and circumstantial evidence suggests that LCN7 may be an important regulator of angiogenesis. Therefore, we hypothesized that LCN7 may be an important regulator of vascular function.

Methodology and Principal Findings

To test this hypothesis, we examined the effect of LCN7 overexpression, recombinant protein and gene knockdown in a series of in vitro and in vivo models of angiogenesis. We found that overexpression of LCN7 in MB114 and SVEC murine endothelial cell lines or administration of highly purified recombinant LCN7 protein increased endothelial cell invasion. Similarly, LCN7 increased angiogenic sprouting from quiescent endothelial cell monolayers and ex vivo aortic rings. Moreover, LCN7 increased endothelial cell sensitivity to TGF-β but did not affect sensitivity to other pro-angiogenic growth factors including bFGF and VEGF. Finally, morpholino based knockdown of LCN7 in zebrafish embryos specifically inhibited angiogenic sprouting but did not affect vasculogenesis within injected embryos.

Conclusions and Significance

No functional analysis has previously been performed to elucidate the function of LCN7 in vascular or other cellular processes. Collectively, our results show for the first time that LCN7 is an important pro-angiogenic matricellular protein of vascular microenvironments.  相似文献   

9.
10.

Background

Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail.

Methods and Results

5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI).

Conclusion

The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI.  相似文献   

11.
12.

Background

Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics.

Methods and Findings

To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF.

Conclusions

These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.  相似文献   

13.

Background

Tissues respond to injury by releasing acute phase reaction (APR) proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα) and the acute phase reactant orosomucoid-1 (ORM1). ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα.

Methods and Results

Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM) assay.

Conclusion

ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic process by VEGF. The context-dependent nature of ORM1 angioregulatory function is further demonstrated in the CAM assay where ORM1 stimulates developmental angiogenesis without exerting any inhibitory activity.  相似文献   

14.

Background

Increasing number of evidence shows that soluble factors and extracellular matrix (ECM) components provide an optimal microenvironment controlling human bone marrow mesenchymal stem cell (MSC) functions. Successful in vivo administration of stem cells lies in their ability to migrate through ECM barriers and to differentiate along tissue-specific lineages, including endothelium. Lumican, a protein of the small leucine-rich proteoglycan (SLRP) family, was shown to impede cell migration and angiogenesis. The aim of the present study was to analyze the role of lumican in the control of MSC migration and transition to functional endothelial progenitor cell (EPC).

Methodology/Principal Findings

Lumican inhibited tube-like structures formation on Matrigel® by MSC, but not EPC. Since matrix metalloproteinases (MMPs), in particular MMP-14, play an important role in remodelling of ECM and enhancing cell migration, their expression and activity were investigated in the cells grown on different ECM substrata. Lumican down-regulated the MMP-14 expression and activity in MSC, but not in EPC. Lumican inhibited MSC, but not EPC migration and invasion. The inhibition of MSC migration and invasion by lumican was reversed by MMP-14 overexpression.

Conclusion/Significance

Altogether, our results suggest that lumican inhibits MSC tube-like structure formation and migration via mechanisms that involve a decrease of MMP-14 expression and activity.  相似文献   

15.

Introduction

The angiogenic proteins angiopoietin (Ang)-1, Ang-2 and vascular endothelial growth factor (VEGF) are regulators of endothelial inflammation and integrity. Since platelets store large amounts of Ang-1 and VEGF, measurement of circulation levels of these proteins is sensitive to platelet number, in vivo platelet activation and inadvertent platelet activation during blood processing. We studied plasma Ang-1, Ang-2 and VEGF levels in malaria patients, taking the necessary precautions to avoid ex vivo platelet activation, and related plasma levels to platelet count and the soluble platelet activation markers P-selectin and CXCL7.

Methods

Plasma levels of Ang-1, Ang-2, VEGF, P-selectin and CXCL7 were measured in CTAD plasma, minimizing ex vivo platelet activation, in 27 patients with febrile Plasmodium falciparum malaria at presentation and day 2 and 5 of treatment and in 25 healthy controls.

Results

Levels of Ang-1, Ang-2 and VEGF were higher at day 0 in malaria patients compared to healthy controls. Ang-2 levels, which is a marker of endothelial activation, decreased after start of antimalarial treatment. In contrast, Ang-1 and VEGF plasma levels increased and this corresponded with the increase in platelet number. Soluble P-selectin and CXCL7 levels followed the same trend as Ang-1 and VEGF levels. Plasma levels of these four proteins correlated strongly in malaria patients, but only moderately in controls.

Conclusion

In contrast to previous studies, we found elevated plasma levels of Ang-1 and VEGF in patients with malaria resulting from in vivo platelet activation. Ang-1 release from platelets may be important to dampen the disturbing effects of Ang-2 on the endothelium. Evaluation of plasma levels of these angiogenic proteins requires close adherence to a stringent protocol to minimize ex vivo platelet activation.  相似文献   

16.

Aim

Accumulating evidence suggests that extracellular galectin-1 and galectin-3 promote angiogenesis. Increased expression of galectin-1 and/or galectin-3 has been reported to be associated with tumour progression. Thus, it is critical to identify their influence on angiogenesis.

Methods

We examined the individual and combined effects of galectin-1 and galectin-3 on endothelial cell (EC) growth and tube formation using two EC lines, EA.hy926 and HUVEC. The activation of vascular endothelial growth factor receptors (VEGFR1 and VEGFR2) was determined by ELISA and Western blots. We evaluated the VEGFR1 and VEGFR2 levels in endosomes by proximity ligation assay.

Results

We observed different responses to exogenous galectins depending on the EC line. An enhanced effect on EA.hy926 cell growth and tube formation was observed when both galectins were added together. Focusing on this enhanced effect, we observed that together galectins induced the phosphorylation of both VEGFR1 and VEGFR2, whereas galectin-1 and −3 alone induced VEGFR2 phosphorylation only. In the same way, the addition of a blocking VEGFR1 antibody completely abolished the increase in tube formation induced by the combined addition of both galectins. In contrast, the addition of a blocking VEGFR2 antibody only partially inhibited this effect. Finally, the addition of both galectins induced a decrease in the VEGFR1 and VEGFR2 endocytic pools, with a significantly enhanced effect on the VEGFR1 endocytic pool. These results suggest that the combined action of galectin-1 and galectin-3 has an enhanced effect on angiogenesis via VEGFR1 activation, which could be related to a decrease in receptor endocytosis.  相似文献   

17.

Background

Liver metastasis is the most common cause of death in patients with colorectal cancer. Despite extensive research into the biology of cancer progression, the molecular mechanisms that drive colorectal cancer metastasis are not well characterized.

Methods

HT29 LM1, HT29 LM2, HT29 LM3 cell lines were derived from the human colorectal cancer cell line HT29 following multiple rounds of in vivo selection in immunodeficient mice.

Results

CD44 expression, a transmembrane glycoprotein involved in cell-cell and cell-matrix adhesions, and cancer cells adhesion to endothelial cells was increased in all in vivo selected cell lines, with maximum CD44 expression and cancer cells adhesion to endothelial cells in the highly metastatic HT29 LM3 cell line. Activation of c-Met upon hepatocyte growth factor (HGF) stimulation in the in vivo selected cell lines is CD44 independent. In vitro separation of CD44 high and low expression cells from HT29 LM3 cell line with FACS sorting confirmed that c-Met activation is CD44 independent upon hepatocyte growth factor stimulation. Furthermore, in vivo evaluation of CD44 low and high expressing HT29 LM3 cells demonstrated no difference in liver metastasis penetrance.

Conclusions

Taken together, our findings indicate that the aggressive metastatic phenotype of in vivo selected cell lines is associated with overexpression of CD44 and activation of c-MET. We demonstrate that c-Met activation is CD44 independent upon hepatocyte growth factor stimulation and confirm that CD44 expression in HT29 LM3 cell line is not responsible for the increase in metastatic penetrance in HT29 LM3 cell line.  相似文献   

18.

Introduction

TNFα is a proinflammatory cytokine that plays a central role in the pathogenesis of rheumatoid arthritis (RA). We investigated the effects of certolizumab pegol, a TNFα blocker, on endothelial cell function and angiogenesis.

Methods

Human dermal microvascular endothelial cells (HMVECs) were stimulated with TNFα with or without certolizumab pegol. TNFα-induced adhesion molecule expression and angiogenic chemokine secretion were measured by cell surface ELISA and angiogenic chemokine ELISA, respectively. We also examined the effect of certolizumab pegol on TNFα-induced myeloid human promyelocytic leukemia (HL-60) cell adhesion to HMVECs, as well as blood vessels in RA synovial tissue using the Stamper-Woodruff assay. Lastly, we performed HMVEC chemotaxis, and tube formation.

Results

Certolizumab pegol significantly blocked TNFα-induced HMVEC cell surface angiogenic E-selectin, vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression and angiogenic chemokine secretion (P < 0.05). We found that certolizumab pegol significantly inhibited TNFα-induced HL-60 cell adhesion to HMVECs (P < 0.05), and blocked HL-60 cell adhesion to RA synovial tissue vasculature (P < 0.05). TNFα also enhanced HMVEC chemotaxis compared with the negative control group (P < 0.05) and this chemotactic response was significantly reduced by certolizumab pegol (P < 0.05). Certolizumab pegol inhibited TNFα-induced HMVEC tube formation on Matrigel (P < 0.05).

Conclusion

Our data support the hypothesis that certolizumab pegol inhibits TNFα-dependent leukocyte adhesion and angiogenesis, probably via inhibition of angiogenic adhesion molecule expression and angiogenic chemokine secretion.  相似文献   

19.

Background

The human endometrium undergoes cyclical regeneration throughout a woman''s reproductive life. Ectopic implantation of endometrial cells through retrograde menstruation gives rise to endometriotic lesions which affect approximately 10% of reproductive-aged women. The high regenerative capacity of the human endometrium at eutopic and ectopic sites suggests the existence of stem/progenitor cells and a unique angiogenic system. The objective of this study was to isolate and characterize putative endometrial stem/progenitor cells and to address how they might be involved in the physiology of endometrium.

Methodology/Principal Findings

We found that approximately 2% of the total cells obtained from human endometrium displayed a side population (SP) phenotype, as determined by flow cytometric analysis of Hoechst-stained cells. The endometrial SP (ESP) cells exhibited preferential expression of several endothelial cell markers compared to endometrial main population (EMP) cells. A medium specific for endothelial cell culture enabled ESP cells to proliferate and differentiate into various types of endometrial cells, including glandular epithelial, stromal and endothelial cells in vitro, whereas in the same medium, EMP cells differentiated only into stromal cells. Furthermore, ESP cells, but not EMP cells, reconstituted organized endometrial tissue with well-delineated glandular structures when transplanted under the kidney capsule of severely immunodeficient mice. Notably, ESP cells generated endothelial cells that migrated into the mouse kidney parenchyma and formed mature blood vessels. This potential for in vivo angiogenesis and endometrial cell regeneration was more prominent in the ESP fraction than in the EMP fraction, as the latter mainly gave rise to stromal cells in vivo.

Conclusions/Significance

These results indicate that putative endometrial stem cells are highly enriched in the ESP cells. These unique characteristics suggest that ESP cells might drive physiological endometrial regeneration and be involved in the pathogenesis of endometriosis.  相似文献   

20.

Background

Platelet-rich plasma (PRP) is increasingly used as a cell culture supplement, in order to reduce the contact of human cells with animal-derived products during in vitro expansion. The effect of supplementation changes on cell growth and protein production is not fully characterized.

Methods

Human mesenchymal stromal cells from bone marrow, adipose tissue and Wharton''s Jelly were isolated and cultured in PRP-supplemented media. Proliferation, in vitro differentiation, expression of cell surface markers, mRNA expression of key genes and protein secretion were quantified.

Results

10% PRP sustained five to tenfold increased cell proliferation as compared to 10% fetal bovine serum. Regarding cell differentiation, PRP reduced adipogenic differentiation and increased calcium deposits in bone marrow and adipose tissue-mesenchymal stromal cells. Wharton''s Jelly derived mesenchymal stromal cells secreted higher concentrations of chemokines and growth factors than other mesenchymal stromal cells when cultured in PRP-supplemented media. Bone marrow derived mesenchymal stromal cells secreted higher concentrations of pro-inflammatory and pro-angiogenic proteins. Mesenchymal stromal cells isolated from adipose tissue secreted higher amounts of extracellular matrix components.

Conclusions

Mesenchymal stromal cells purified from different tissues have distinct properties regarding differentiation, angiogenic, inflammatory and matrix remodeling potential when cultured in PRP supplemented media. These abilities should be further characterized in order to choose the best protocols for their therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号