首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosaminoglycans (GAGs) are highly sulfated linear polysaccharides prevalent in the extracellular matrix, and they associate with virtually all amyloid deposits in vivo. GAGs accelerate the aggregation of many amyloidogenic peptides in vitro, but little mechanistic evidence is available to explain why. Herein, spectroscopic methods demonstrate that GAGs do not affect the secondary structure of the monomeric 8 kDa amyloidogenic fragment of human plasma gelsolin. Moreover, monomerized 8 kDa gelsolin does not bind to heparin under physiological conditions. In contrast, 8 kDa gelsolin cross-β-sheet oligomers and amyloid fibrils bind strongly to heparin, apparently because of electrostatic interactions between the negatively charged polysaccharide and a positively charged region of the 8 kDa gelsolin assemblies. Our observations are consistent with a scaffolding mechanism whereby cross-β-sheet oligomers, upon formation, bind to GAGs, accelerating the fibril extension phase of amyloidogenesis, possibly by concentrating and orienting the oligomers to more efficiently form amyloid fibrils. Notably, heparin decreases the 8 kDa gelsolin concentration necessary for amyloid fibril formation, likely a consequence of fibril stabilization through heparin binding. Because GAG overexpression, which is common in amyloidosis, may represent a strategy for minimizing cross-β-sheet oligomer toxicity by transforming them into amyloid fibrils, the mechanism described herein for GAG-mediated acceleration of 8 kDa gelsolin amyloidogenesis provides a starting point for therapeutic strategy development. The addition of GAG mimetics, small molecule sulfonates shown to reduce the amyloid load in animal models of amyloidosis, to a heparin-accelerated 8 kDa gelsolin aggregation reaction mixture neither significantly alters the rate of amyloidogenesis nor prevents oligomers from binding to GAGs, calling into question their commonly accepted mechanism.  相似文献   

2.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The double W/F replacement renders apomyoglobin highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions. In this work we analyze the early stage of W7FW14F apomyoglobin aggregation following the time dependence of the process by far-UV CD, Fourier-transform infrared (FTIR) spectroscopy, and heme-binding properties. The results show that the aggregation of W7FW14F apomyoglobin starts from a native-like globin state able to bind the prosthetic group with spectroscopic properties similar to those observed for wild-type apoprotein. Nevertheless, it rapidly aggregates, forming amyloid fibrils. However, when the prosthetic group is added before the beginning of aggregation, amyloid fibrillization is inhibited, although the aggregation process is not prevented. Moreover, the apomyoglobin aggregates formed in these conditions are not cytotoxic differently from what is observed for all amyloidogenic proteins. These results open new insights into the relationship between the structure adopted by the protein into the aggregates and their ability to trigger the impairment of cell viability.  相似文献   

3.
Cohlberg JA  Li J  Uversky VN  Fink AL 《Biochemistry》2002,41(5):1502-1511
Parkinson's disease is the second most common neurodegenerative disease and results from loss of dopaminergic neurons in the substantia nigra. The aggregation and fibrillation of alpha-synuclein have been implicated as a causative factor in the disease. Glycosaminoglycans (GAGs) are routinely found associated with amyloid deposits in most amyloidosis diseases, and there is evidence to support an active role of GAGs in amyloid fibril formation in some cases. In contrast to the extracellular amyloid deposits, the alpha-synuclein deposits in Lewy body diseases are intracellular, and thus it is less clear whether GAGs may be involved. To determine whether the presence of GAGs does affect the fibrillation of alpha-synuclein, the kinetics of fibril formation were investigated in the presence of a number of GAGs and other charged polymers. Certain GAGs (heparin, heparan sulfate) and other highly sulfated polymers (dextran sulfate) were found to significantly stimulate the formation of alpha-synuclein fibrils. Interestingly, the interaction of GAGs with alpha-synuclein is quite specific, since some GAGs, e.g., keratan sulfate, had negligible effect. Heparin not only increased the rate of fibrillation but also apparently increased the yield of fibrils. The molar ratio of heparin to alpha-synuclein and the incorporation of fluorescein-labeled heparin into the fibrils demonstrate that the heparin is integrated into the fibrils and is not just a catalyst for fibrillation. The apparent dissociation constant for heparin in stimulating alpha-synuclein fibrillation was 0.19 microM, indicating a strong affinity. Similar effects of heparin were observed with the A53T and A30P mutants of alpha-synuclein. Since there is some evidence that Lewy bodies may contain GAGs, these observations may be very relevant in the context of the etiology of Parkinson's disease.  相似文献   

4.
Ecroyd H  Carver JA 《IUBMB life》2008,60(12):769-774
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.  相似文献   

5.
Glycosaminoglycans (GAGs), which are found in association with all extracellular amyloid deposits in humans, are known to accelerate the aggregation of various amyloidogenic proteins in vitro. However, the precise molecular mechanism(s) by which GAGs accelerate amyloidogenesis remains elusive. Herein, we show that sulfated GAGs, especially heparin, accelerate transthyretin (TTR) amyloidogenesis by quaternary structural conversion. The clustering of sulfate groups on heparin and its polymeric nature are essential features for accelerating TTR amyloidogenesis. Heparin does not influence TTR tetramer stability or TTR dissociation kinetics, nor does it alter the folded monomer-misfolded monomer equilibrium directly. Instead, heparin accelerates the conversion of preformed TTR oligomers into larger aggregates. The more rapid disappearance of monomeric TTR in the presence of heparin likely reflects the fact that the monomer-misfolded amyloidogenic monomer-oligomer-TTR fibril equilibria are all linked, a hypothesis that is strongly supported by the light scattering data. TTR aggregates prepared in the presence of heparin exhibit a higher resistance to trypsin and proteinase K proteolysis and a lower exposure of hydrophobic side chains comprising hydrophobic clusters, suggesting an active role for heparin in amyloidogenesis. Our data suggest that heparin accelerates TTR aggregation by a scaffold-based mechanism, in which the sulfate groups comprising GAGs interact primarily with TTR oligomers through electrostatic interactions, concentrating and orienting the oligomers, facilitating the formation of higher molecular weight aggregates. This model raises the possibility that GAGs may play a protective role in human amyloid diseases by interacting with proteotoxic oligomers and promoting their association into less toxic amyloid fibrils.  相似文献   

6.
Aortic medial amyloid (AMA) occurs as localised non-atheromatous plaques in virtually all individuals over the age of 50. The major protein component of AMA is the 50-residue polypeptide medin. Here we propose two methods of manipulating medin aggregation to reduce the cytotoxic species of medin: either by promoting formation of larger benign species or retaining small non-cytotoxic species. Medin co-localises with a variety of factors including glycosaminoglycans (GAGs). The first approach shows that the GAG heparin enhances the rate of medin aggregation and alters the morphology of the amyloid fibrils. Cellular viability measurements suggest that heparin eliminates small cytotoxic species of medin, promoting formation of benign fibrils. The second approach applies a previously successful approach of designing small peptide moieties that are complementary to the key amyloidogenic sequence but which contain modified amino acids known to disrupt hydrogen bonding and therefore prevent aggregation of the target protein. This approach also reduces cellular toxicity of medin at all stages of the aggregation process examined exhibiting a different mode of action to heparin. These results raise the question of whether enhancement of medin aggregation by GAGs is beneficial, by eliminating toxic oligomers, or has deleterious effects by reducing arterial plasticity associated with increased fibril load and whether small peptide inhibitors can be applied as drug candidates for amyloid diseases.  相似文献   

7.
The apomyoglobin mutant W7FW14F forms amyloid-like fibrils at physiological pH. We examined the kinetics of fibrillogenesis using three techniques: the time dependence of the fluorescence emission of thioflavin T and 1-anilino-8-naphthalenesulfonate, circular dichroism measurements, and electron microscopy. We found that in the early stage of fibril formation, non-native apomyoglobin molecules containing beta-structure elements aggregate to form a nucleus. Subsequently, more molecules aggregate around the nucleus, thereby resulting in fibril elongation. We evaluated by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) the cytotoxicity of these aggregates at the early stage of fibril elongation versus mature fibrils and the wild-type protein. Similar to other amyloid-forming proteins, cell toxicity was not due to insoluble mature fibrils but rather to early pre-fibrillar aggregates. Propidium iodide uptake showed that cell toxicity is the result of altered membrane permeability. Phalloidin staining showed that membrane damage is not associated to an altered cell shape caused by changes in the cytoskeleton.  相似文献   

8.
《Biophysical journal》2022,121(11):2084-2095
Accumulation of insoluble amyloid fibrils is widely studied as a critical factor in the pathology of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Misfolded Cu, Zn superoxide dismutase (SOD1) was the first protein linked to ALS, and non-native SOD1 trimeric oligomers were recently linked to cytotoxicity, while larger oligomers were protective to cells. The balance between trimers and larger aggregates in the process of SOD1 aggregation is, thus, a critical determinant of potential therapeutic approaches to treat ALS. However, it is unknown whether these trimeric oligomers are a necessary intermediate for larger aggregate formation or a distinct off-pathway species competing with fibril formation. Depending on the on- or off-pathway scenario of trimer formation, we expect drastically different therapeutic approaches. Here, we show that the toxic SOD1 trimer is an off-pathway intermediate competing with protective fibril formation. We design mutant SOD1 constructs that remain in a trimeric state (super-stable trimers) and show that stabilizing the trimeric SOD1 prevents formation of fibrils in vitro and in a motor neuron-like cell model (NSC-34). Using size exclusion chromatography, we track the aggregation kinetics of purified SOD1 and show direct competition of trimeric SOD1 with larger oligomer and fibril formation. Finally, we show the trimer is structurally independent of both larger soluble oligomers and insoluble fibrils using circular dichroism spectroscopy and limited proteolysis.  相似文献   

9.
Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded beta(2)-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical beta-sheet architecture. The same beta-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of beta(2)-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein.  相似文献   

10.
Our previous studies have demonstrated that perlecan and perlecan-derived glycosaminoglycans (GAGs) not only bind beta-amyloid protein (Abeta) 1-40 and 1-42, but are also potent enhancers of Abeta fibril formation and stabilize amyloid fibrils once formed. However, it was not determined which moieties in perlecan heparan sulfate GAG chains may be responsible for the observed effects and whether other GAGs were also capable of a similar enhancement of Abeta fibril formation as observed with perlecan GAGs. In the present study, thioflavin T fluorometry (over a 1-week period) was used to extend our previous studies and to test the hypothesis that the sulfate moiety is critical for the enhancing effects of heparin/heparan sulfate GAGs on Abeta 1-40 fibrillogenesis. This hypothesis was confirmed when removal of all sulfates from heparin (i.e., completely desulfated N-acetylated heparin) led to a complete loss in the enhancement of Abeta fibrillogenesis as demonstrated in both thioflavin T fluorometry and Congo red staining studies. On the other hand, removal of O-sulfate from heparin (i.e., completely desulfated N-sulfated heparin), and to a lesser extent N-sulfate (i.e., N-desulfated N-acetylated heparin), resulted in only a partial loss of the enhancement of Abeta 1-40 fibril formation. These studies indicate that the sulfate moieties of GAGs are critical for enhancement of Abeta amyloid fibril formation. In addition, other sulfated molecules such as chondroitin-4-sulfate, dermatan sulfate, dextran sulfate, and pentosan polysulfate all significantly enhanced (greater than twofold by 3 days) Abeta amyloid fibril formation. These latter findings indicate that deposition and accumulation of other GAGs at sites of Abeta amyloid deposition in Alzheimer's disease brain may also participate in the enhancement of Abeta amyloidosis.  相似文献   

11.
Amyloid fibril formation is a distinctive hallmark of a number of degenerative diseases. In this process, protein monomers self-assemble to form insoluble structures that are generally referred to as amyloid fibrils. We have induced in vitro amyloid fibril formation of a PDZ domain by combining mechanical agitation and high ionic strength under conditions otherwise close to physiological (pH 7.0, 37°C, no added denaturants). The resulting aggregates enhance the fluorescence of the thioflavin T dye via a sigmoidal kinetic profile. Both infrared spectroscopy and circular dichroism spectroscopy detect the formation of a largely intermolecular β-sheet structure. Atomic force microscopy shows straight, rod-like fibrils that are similar in appearance and height to mature amyloid-like fibrils. Under these conditions, before aggregation, the protein domain adopts an essentially native-like structure and an even higher conformational stability (ΔGU-FH2O). These results show a new method for converting initially folded proteins into amyloid-like aggregates. The methodological approach used here does not require denaturing conditions; rather, it couples agitation with a high ionic strength. Such an approach offers new opportunities to investigate protein aggregation under conditions in which a globular protein is initially folded, and to elucidate the physical forces that promote amyloid fibril formation.  相似文献   

12.
The tissue specificity of fibrillar deposition in dialysis-related amyloidosis is most likely associated with the peculiar interaction of beta2-microglobulin (beta2-m) with collagen fibers. However, other co-factors such as glycosaminoglycans might facilitate amyloid formation. In this study we have investigated the role of heparin in the process of collagen-driven amyloidogenesis. In fact, heparin is a well known positive effector of fibrillogenesis, and the elucidation of its potential effect in this type of amyloidosis is particularly relevant because heparin is regularly given to patients subject to hemodialysis to prevent blood clotting. We have monitored by atomic force microscopy the formation of beta2-m amyloid fibrils in the presence of collagen fibers, and we have discovered that heparin strongly accelerates amyloid deposition. The mechanism of this effect is still largely unexplained. Using dynamic light scattering, we have found that heparin promotes beta2-m aggregation in solution at pH 6.4. Morphology and structure of fibrils obtained in the presence of collagen and heparin are highly similar to those of natural fibrils. The fibril surface topology, investigated by limited proteolysis, suggests that the general assembly of amyloid fibrils grown under these conditions and in vitro at low pH is similar. The exposure of these fibrils to trypsin generates a cleavage at the C-terminal of lysine 6 and creates the 7-99 truncated form of beta2-m (DeltaN6beta2-m) that is a ubiquitous constituent of the natural beta2-m fibrils. The formation of this beta2-m species, which has a strong propensity to aggregate, might play an important role in the acceleration of local amyloid deposition.  相似文献   

13.
As has been recently shown, the toxicity of protein aggregates is determined by their structure. Therefore, special attention has been focused on the search for factors that specify the structural features of formed amyloid fibrils. The effect of amino acid substitutions in apomyoglobin on the structural characteristics of its amyloid aggregates has been analyzed. The morphology and secondary structure of amyloids of the wild-type protein and its mutant variants Val10Ala, Val10Phe, and Trp14Phe have been compared, and the regions involved in intermolecular interactions in fibrils have been determined using limited proteolysis and mass spectrometry. No considerable differences have been found in the morphology (shape, length, or diameter) or the content (percentage) of the cross-β structure of apomyoglobin amyloids and its mutant variants. Amyloid cores of wild-type apomyoglobin and variants with Val10Phe and Trp14Phe substitutions have been formed by different regions of the polypeptide chain. The case study of apomyoglobin demonstrates that the location of amyloidogenic regions in the polypeptide chain of wild-type protein and its mutant forms can differ. Thus, possible structural changes in amyloids resulting from amino acid substitutions should be taken into account when studying phenotype aggregation.  相似文献   

14.
Neurodegenerative diseases are associated with misfolding and deposition of specific proteins, either intra or extracellularly in the nervous system. Advanced glycation end products (AGEs) originate from different molecular species that become glycated after exposure to sugars. Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. To this concern, in the present study we have investigated the effect of glycation on the aggregation pathway of the amyloidogenic W7FW14F apomyoglobin. Although this protein has not been related to any amyloid disease, it represents a good model to resemble proteins that intrinsically evolve toward the formation of amyloid aggregates in physiological conditions. We show that D-ribose, but not D-glucose, rapidly induces the W7FW14F apomyoglobin to generate AGEs in a time-dependent manner and protein ribosylation is likely to involve lysine residues on the polypeptide chain. Ribosylation of the W7FW14F apomyoglobin strongly affects its aggregation kinetics producing amyloid fibrils within few days. Cytotoxicity of the glycated aggregates has also been tested using a cell viability assay. We propose that ribosylation in the W7FW14F apomyoglobin induces the formation of a cross-link that strongly reduces the flexibility of the H helix and/or induce a conformational change that favor fibril formation. These results open new perspectives for AGEs biological role as they can be considered not only a triggering factor in amyloidosis but also a player in later stages of the aggregation process.  相似文献   

15.
To understand the mechanism of amyloid fibril formation of a protein, we examined wild-type and three mutant human lysozymes containing both amyloidogenic and non-amyloidogenic proteins: I56T (amyloidogenic); EAEA, which has four additional residues (Glu-Ala-Glu-Ala-) at the N-terminus located on a beta-structure; and EAEA-I56T, which is an I56T mutant of EAEA. All formed amyloid-like fibrils through an in the increase contents of alpha-helix with increasing concentration of ethanol. The order of propensity for amyloid-like fibril formation in highly concentrated ethanol solution is EAEA-I56T > EAEA > I56T > wild-type. This order is almost the reverse of the order of conformational stability of these proteins, wild-type > EAEA > I56T > EAEA-I56T. The important views in this work are as follows. (i) Artificially modified proteins formed amyloid fibrils in vitro. This means that amyloid formation is a generic property of polypeptide chains. (ii) The amyloidogenic mutation Ile56 to Thr caused the destabilization and promoted fibril formation in the wild-type and EAEA human lysozymes, indicating that instability facilitates amyloid formation. (iii) The mutant protein EAEA human lysozyme had higher propensity for fibril formation than the amyloidogenic mutant protein, indicating that amyloid formation is controlled not only by stability but also by other factors. In this case, appending polypeptide chains to a beta-structure accelerated amyloid formation.  相似文献   

16.
The Src-homology region 3 domain of chicken alpha-spectrin (Spc-SH3) is a small two-state folding protein, which has never been described to form amyloid fibrils under any condition investigated so far. We show here that the mutation of asparagine 47 to alanine at the distal loop, which destabilises similarly the native and folding transition states of the domain, induces the formation of amyloid fibrils under mild acid conditions. Amyloid aggregation of the mutant is enhanced by the increase in temperature, protein concentration and NaCl concentration. The early stages of amyloid formation have been monitored as a function of time and temperature using a variety of biophysical methods. Differential scanning calorimetry experiments under conditions of amyloid formation have allowed the identification of different thermal transitions corresponding to conformational and aggregation processes as well as to the high-temperature disaggregation and unfolding of the amyloid fibrils. Aggregation is preceded by a rapid conformational change in the monomeric domain involving about 40% of the global unfolding enthalpy, considerable change in secondary structure, large loss of tertiary structure and exposure of hydrophobic patches to the solvent. The conformational change is followed by formation of a majority of oligomeric species with apparent hydrodynamic radius between 2.5 nm and 10nm, depending on temperature, together with the appearance and progressive growth of protofibrillar aggregates. After these early aggregation stages, long and curved fibrils of up to several micrometers start to develop by elongation of the protofibrils. The calorimetric data indicate that the specific enthalpy of fibril disaggregation and unfolding is relatively low, suggesting a low density of interactions within the fibril structure as compared to the native protein and a main entropy contribution to the stability of the amyloid fibrils.  相似文献   

17.
A range of disorders such as Alzheimer's disease and type II diabetes have been linked to protein misfolding and aggregation. Transthyretin is an amyloidogenic protein which is involved in familial amyloid polyneuropathy, the most common form of systemic amyloid disease. A peptide fragment of this protein, TTR105-115, has been shown to form well-defined amyloid fibrils in vitro. In this study, the stability of amyloid fibrils towards high hydrostatic pressure has been investigated by Fourier transform infrared spectroscopy. Information on the morphology of the species exposed to high hydrostatic pressure was obtained by atomic force microscopy. The species formed early in the aggregation process were found to be dissociated by relatively low hydrostatic pressure (220 MPa), whereas mature fibrils are pressure insensitive up to 1.3 GPa. The pressure stability of the mature fibrils is consistent with a fibril structure in which there is an extensive hydrogen bond network in a tightly packed environment from which water is excluded. The fact that early aggregates can be dissociated by low pressure suggests, however, that hydrophobic and electrostatic interactions are the dominant factors stabilizing the species formed in the early stages of fibril formation.  相似文献   

18.
Propagation and infectivity of prions in human prionopathies are likely associated with conversion of the mainly a-helical human prion protein, HuPrP, into an aggregated form with amyloid-like properties. Previous reports on efficient conversion of recombinant HuPrP have used mild to harsh denaturing conditions to generate amyloid fibrils in vitro. Herein we report on the in vitro conversion of four forms of truncated HuPrP (sequences 90–231 and 121–231 with and without an N-terminal hexa histidine tag) into amyloid-like fibrils within a few hours by using a protocol (phosphate buffered saline solutions at neutral pH with intense agitation) close to physiological conditions. The conversion process monitored by thioflavin T, ThT, revealed a three stage process with lag, growth and equilibrium phases. Seeding with preformed fibrils shortened the lag phase demonstrating the classic nucleated polymerization mechanism for the reaction. Interestingly, comparing thioflavin T kinetics with solubility and turbidity kinetics it was found that the protein initially formed non- thioflavionophilic, morphologically disordered aggregates that over time matured into amyloid fibrils. By transmission electron microscopy and by fluorescence microscopy of aggregates stained with luminescent conjugated polythiophenes (LCPs); we demonstrated that HuPrP undergoes a conformational conversion where spun and woven fibrils protruded from morphologically disordered aggregates. The initial aggregation functioned as a kinetic trap that decelerated nucleation into a fibrillation competent nucleus, but at the same time without aggregation there was no onset of amyloid fibril formation. The agitation, which was necessary for fibril formation to be induced, transiently exposes the protein to the air-water interface suggests a hitherto largely unexplored denaturing environment for prion conversion.Key words: misfolding, aggregation, amyloid, prion, conformational conversion, fluorescence  相似文献   

19.
The 219-residue protein p25α stimulates the fibrillation of α-synuclein (αSN) in vitro and colocalizes with it in several α-synucleinopathies. Although p25α does not fibrillate by itself under native conditions in vitro, αSN-free p25α aggregates have also been observed in vivo in, for example, multiple system atrophy. To investigate which environmental conditions might trigger this aggregation, we investigated the effect of polyanionic biomolecules on p25α aggregation. Heparin, polyglutamate, arachidonic acid micelles, and RNA all induce p25α aggregation. More detailed studies using heparin as template for aggregation reveal that a minimum of 10-14 heparin monosaccharide units per heparin polymer are required. Bona fide fibrils are only formed at intermediate heparin concentrations, possibly because an excess of heparin binding sites blocks the inter-p25α contacts required for amyloid formation. Other polyanions also show an optimum for amyloid formation. Aggregation involves only modest structural changes according to both spectroscopic and proteolytic experiments. The aggregates do not seed aggregation of heparin-free p25α, suggesting that heparin is required in stoichiometric amounts to form organized structures. We are able to reproduce these observations in a model involving two levels of binding of p25α to heparin. We conclude that the modest structural changes that p25α undergoes can promote weak intermolecular contacts and that polyanions such as heparin play a central role in stabilizing these aggregates but in multiple ways, leading to different types of aggregates. This highlights the role of non-protein components in promoting protein aggregation in vivo.  相似文献   

20.
The human molecular chaperone protein DNAJB6 was recently found to inhibit the formation of amyloid fibrils from polyglutamine peptides associated with neurodegenerative disorders such as Huntington disease. We show in the present study that DNAJB6 also inhibits amyloid formation by an even more aggregation-prone peptide (the amyloid-beta peptide, Aβ42, implicated in Alzheimer disease) in a highly efficient manner. By monitoring fibril formation using Thioflavin T fluorescence and far-UV CD spectroscopy, we have found that the aggregation of Aβ42 is retarded by DNAJB6 in a concentration-dependent manner, extending to very low sub-stoichiometric molar ratios of chaperone to peptide. Quantitative kinetic analysis and immunochemistry studies suggest that the high inhibitory efficiency is due to the interactions of the chaperone with aggregated forms of Aβ42 rather than the monomeric form of the peptide. This interaction prevents the growth of such species to longer fibrils and inhibits the formation of new amyloid fibrils through both primary and secondary nucleation. A low dissociation rate of DNAJB6 from Aβ42 aggregates leads to its incorporation into growing fibrils and hence to its gradual depletion from solution with time. When DNAJB6 is eventually depleted, fibril proliferation takes place, but the inhibitory activity can be prolonged by introducing DNAJB6 at regular intervals during the aggregation reaction. These results reveal the highly efficacious mode of action of this molecular chaperone against protein aggregation, and demonstrate that the role of molecular chaperones can involve interactions with multiple aggregated species leading to the inhibition of both principal nucleation pathways through which aggregates are able to form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号